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Acute respiratory distress syndrome (ARDS) is one of Despite progress in supportive treatment over the past
the most common acute critical conditions in the Intensive decade, the mortality rate for ARDS remains around 40%,
Care Unit (ICU), characterized by acute hypoxemic and early identification and accurate prognostic

respiratory failure, with high incidence and mortality rates. assessment still face significant challenges [1]. Traditional
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risk scoring systems, such as the SOFA score, have limited
predictive ability and fail to meet clinical needs. The rapid
development of artificial intelligence (AI) and machine
learning (ML) technologies in recent years has provided
new opportunities for early prediction, phenotypic
classification, and personalized management of ARDS.

Al significantly enhances the diagnostic and
prognostic evaluation capabilities for ARDS by integrating
clinical data, biomarkers, and imaging features. Some
studies have utilized dynamic clinical data collected from
the ARDSNet FACTT trial to develop a random forest
model for mortality prediction, showing high predictive
performance (AUC = 0.84) in ARDS prognosis evaluation
[2]. Furthermore, Al combined with natural language
processing (NLP) and imaging analysis technologies can
efficiently process complex clinical information,
supporting personalized treatment [3]. These findings
demonstrate that Al and ML technologies have significant
clinical application potential in the early identification, risk
assessment, and personalized management of ARDS.
However, despite promising prospects, ML models still
require further research to improve their interpretability
and clinical applicability. This review summarizes the
progress of Al applications in precision medicine for
ARDS, analyzes its limitations, and discusses future
development directions.

1. Al in Early Detection and Risk Prediction of
ARDS

Machine learning (ML) has shown significant
advantages in early recognition and risk stratification of
ARDS. By analyzing complex, multidimensional clinical
data, ML models can accurately identify key prognostic
factors. Predictive models based on ML have shown
consistency indices of 0.84 and 0.81 in training and
external validation datasets, significantly outperforming
traditional SOFA scores (AUC = 0.64) [4]. Specific
algorithms such as XGBoost achieved an AUC of 0.833
when predicting sepsis-associated ARDS in-hospital
mortality [5]. Multimodal data fusion further enhances
predictive accuracy. By integrating clinical parameters,
imaging features, and biomarkers, models can provide a
comprehensive assessment of the patient’s condition.
Models combining clinical and omics data achieved an
AUC of 0.868, with a systematic review showing a
summary AUC of 0.91 for multimodal AI models,
significantly optimizing early diagnostic capability [6-7].
Al-driven early prediction is of great value in clinical
management, enabling timely identification and
intervention of high-risk patients, optimizing resource
allocation, and improving prognosis. However, the clinical
translation of AI models faces challenges: the "black box"
nature makes predictions difficult to interpret, which
affects clinical trust, and the clinical acceptability and
applicability of models need further validation. Future
research should focus on improving model interpretability,
strengthening clinical validation, and optimizing
integration with clinical workflows to promote their broad
application in ARDS management.

2. Al in Phenotypic Classification of ARDS

ARDS is a disease with significant clinical
heterogeneity, which is the core challenge of precision
medicine for ARDS. Phenotypic classification is crucial
for guiding treatment strategies. Currently, the phenotypic
classification of ARDS patients mainly relies on clinical
features, imaging examinations, and biomarkers. Al-
driven phenotypic classification through multimodal data
provides a new path for personalized treatment. Studies
have shown that ML-based phenotypic classification can
combine clinical characteristics (such as etiology and
physiological parameters), imaging data (such as lung
ultrasound), and biomarkers (such as gene expression),
identifying subphenotypes with different prognoses and
treatment responses. Researchers divided 1,902 patients’
lung ultrasound data into seven phenotypes reflecting
different pathophysiological states, which represent the
typical features of different critical patients [8]. Different
subphenotypes respond differently to treatments (such as
prone  positioning  ventilation), and  ML-based
subphenotypes have revealed significant differences in 28-
day mortality in ARDS patients [9]. Al-driven predictive
models (such as high-flow nasal oxygen failure risk
models) can assist in optimizing treatment decisions [10].
Furthermore, precise phenotypic classification can
optimize clinical trial design by selecting homogeneous
patient groups to improve research efficiency. Al-enabled
phenotypic classification is not only key to understanding
the heterogeneity of ARDS but also forms the cornerstone
for personalized interventions and improving prognosis.

3. Al-Assisted Prognosis Prediction in ARDS

Al has demonstrated significant advantages in
predicting the prognosis of ARDS, with key factors being
the precise selection of prognostic indicators and data
features. Clinical characteristics (such as age, gender,
comorbidities, and blood oxygen saturation) combined
with laboratory markers (such as C-reactive protein and
white blood cell count) effectively reflect disease severity
and inflammation status. Feature selection methods to
handle collinearity can prevent overfitting and improve
model performance. Deep learning models based on high-
quality, diverse datasets have achieved an AUC of 0.833 in
predicting ICU patient mortality, and multimodal models
integrating clinical, metabolomic, and biochemical data
further improved the AUC [5]. Al models excel in
identifying high-risk complications (such as acute kidney
injury, AUC = 0.865) and specific subtypes (such as
low/high inflammation subtypes in pediatric ARDS),
providing support for personalized treatment [11-12].
However, the generalizability of models is limited by the
diversity of data sources, and the lack of interpretability of
complex models may reduce clinical trust; data privacy
and ethical issues also restrict the widespread application
of these models [13]. Future research should optimize
model development processes, enhance interpretability,
and establish a data security framework to accelerate Al’s
translation into clinical practice.
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4. AI-Guided Mechanical Ventilation and Fluid
Management Strategies

Mechanical ventilation is a key intervention in the
treatment of ARDS. However, inappropriate ventilation
settings can worsen lung injury, making the optimization
of mechanical ventilation settings essential. In recent years,
Al technologies, especially reinforcement learning
algorithms, have shown significant potential in adjusting
ventilation parameters for personalized care. Al models
based on physiological data can adjust ventilation
parameters (such as tidal volume and positive end-
expiratory pressure) in real-time, reducing complications
such as barotrauma and shortening ventilation time [14].
Studies have shown that AI models outperform traditional
clinical practices in estimating in-hospital mortality and
optimizing oxygen saturation, with personalized
ventilation settings significantly reducing expected in-
hospital mortality.

Fluid management is a crucial task in ARDS
management. Al models evaluating fluid load and
circulatory status provide effective decision support for
clinicians. These models analyze real-time data from
patients, including cardiac output, blood pressure, and
urine output, to assess fluid status and circulatory function.
Al continuously monitors hemodynamic data, dynamically
balancing fluid requirements and the risk of overload, thus
reducing complications such as pulmonary edema [15].
Clinical trials and real-world data have validated the
effectiveness of Al strategies. For example, privileged
logistic regression models outperform traditional methods
in ARDS subgroup classification and survival prediction,
significantly reducing mortality and medical resource
consumption [16]. Future studies should further enhance
the generalizability and interpretability of models to ensure
their safe application in different clinical environments.

5. Diagnosis and Assessment of ARDS Based on
Imaging Analysis

Al has significantly improved the diagnostic
efficiency and accuracy of ARDS in imaging analysis.
Deep learning algorithms based on chest X-rays can
automatically identify early pulmonary infiltrates and
other pathological features, supporting early diagnosis and
patient stratification. These algorithms exhibit high
sensitivity and  specificity, and are particularly
advantageous in resource-limited environments [17].
Recent research has made significant progress in Al-
assisted CT imaging segmentation and lesion identification.
The introduction of Al has made CT image processing and
analysis more efficient and accurate. Al algorithms can
rapidly process large volumes of imaging data,
automatically detect pulmonary lesions, and perform
segmentation, thereby improving the efficiency of clinical
doctors during the diagnostic process. Al applications in
lung CT have further enhanced diagnostic capabilities. For
example, privileged logistic regression models integrate
mechanical ventilation variables and imaging features,

utilizing a privileged information learning paradigm to
identify subtle lesions, optimizing diagnosis and follow-up
procedures [18]. Radiomics, as an emerging medical
imaging analysis method, extracts numerous quantitative
features from medical images and has been widely applied
in the diagnosis and prognosis evaluation of various
diseases. Specifically, in ARDS management, the
combination of radiomic features with clinical data
provides multi-dimensional assessment capabilities. By
extracting quantitative imaging features (such as texture
and shape indices) and integrating clinical information, Al
models can comprehensively reveal disease complexity,
predict prognosis, and construct accurate risk models [19-
20]. This approach supports personalized treatment
decisions, enhances patient management efficiency, and
future efforts should address data diversity challenges to
improve model generalizability.

6. Limitations and Prospects of Al in Precision
Medicine for ARDS

The application of Al in ARDS precision medicine
holds great potential, covering sub-group classification,
early prediction, and personalized management. Multi-
modal data integration significantly improves prediction
accuracy. However, there are still several challenges: In
terms of data dependency, obtaining high-quality, large-
scale datasets is difficult, limiting model translation and
scalability. The lack of interpretability, due to the "black
box" nature of deep learning, reduces clinical trust,
necessitating the development of more transparent models.
Ethical and technical challenges, such as algorithmic bias,
data privacy, and fairness issues, must be addressed
through policy frameworks. Future research should focus
on developing explainable models, optimizing privacy
protection technologies, and standardizing validation
processes to promote the safe integration of Al into ARDS
management. Furthermore, the use of large-scale cross-
regional datasets will further enhance the generalizability
of models and accelerate the progress of precision
medicine.

7. Conclusion

Al applications in ARDS precision medicine provide
powerful tools for early diagnosis, risk prediction, and
personalized treatment. Machine learning models integrate
multi-modal data, significantly outperforming traditional
methods, and laying the foundation for optimizing clinical
decision-making and improving patient outcomes.
However, issues related to model interpretability, clinical
applicability, and data privacy remain to be addressed. In
the future, through technological optimization, ethical
regulations, and clinical integration, Al is expected to play
a greater role in ARDS management and drive the
comprehensive development of precision medicine.
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and mortality. Early identification and risk assessment are crucial to improving patient prognosis. Current artificial

intelligence (AI) technology, especially machine learning (ML) models, have shown significant potential in the early

diagnosis, risk stratification and personalized management of ARDS. Compared with traditional scoring systems, Al

models perform well in predicting mortality and optimizing clinical decision-making, especially through multimodal

data fusion, which can significantly improve the prediction accuracy of the models. However, the lack of interpretability,

limited clinical applicability and data privacy of Al models are still the main challenges restricting clinical application.

Future research should focus on improving model transparency, optimizing clinical integration and solving ethical issues

to promote the further development of Al-enabled ARDS precision medicine.
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