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Abstract: Objective To develop and validate a predictive model based on machine learning algorithms to assess the risk of acute
respiratory distress syndrome (ARDS) in patients with acute pancreatitis (AP) admitted to the intensive care unit (ICU) . Methods
The relevant data of 857 AP patients from the Medical Information Mart for Intensive Care IV v2.2 (MIMIC-1V v2.2) database were
retrospectively analyzed and were randomly divided into a training set (n=601) and an internal validation set (n=256) ina 7 : 3
ratio. Additionally, The relevant data of 126 AP patients from the ICU of Changshu Hospital Affiliated to Soochow University from
January 2019 to March 2024 were collected as an external test set. Patients were categorized into ARDS and non - ARDS groups
based on the occurrence of ARDS. Demographic characteristics, initial vital signs, laboratory data, functional scores, and
complications within the initial 24-hour of ICU admission were collected. Feature selection was performed using least absolute
shrinkage and selection operator (LASSO) regression. Predictive models were constructed using seven machine learning algorithms:
random forest (RF) , extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) , decision tree (DT) , logistic
regression (LR) , support vector machine (SVM), and K-nearest neighbors (KNN) . Model performance was evaluated using receiver
operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) . Finally, model interpretability was
enhanced through Shapley additive explanations (SHAP) analysis. Results In the MIMIC-IV database, 202 patients (23.57%)
developed ARDS, while 26 patients (20.63%) developed ARDS in the external test set. Seven key variables were selected by LASSO
regression from 43 variables in the training set to construct the models. Among various machine learning models, the RF model
demonstrated the best performance with an area under the curve (AUC) of 0.780 (95%Cl:0.721-0.846) in the internal validation set
and 0.842 (95%Cl:0.751- 0.917) in the external test set, outperforming the other six models. The calibration curve indicated that the
predicted probabilities from the RF model had the smaller deviation from the actual probabilities compared to other models,
showing the best overall predictive performance. SHAP analysis based on the RF model revealed that mechanical ventilation,
Sequential Organ Failure Assessment (SOFA) score, body mass index (BMI) , peripheral oxygen saturation (SpO.) and simplified
acute physiology score (SAPS 1) were the main factors influencing ARDS risk. Mechanical ventilation increased the risk of ARDS
from 16% to 37% . When the SOFA score exceeded 8, the ARDS risk rose significantly. The risk of ARDS elevated with increased BMI.
While SpO. remained below 90%, ARDS risk stabilized at 30%; once SpO: surpassed 90%, the risk demonstrated a declining trend
with further increases in SpO.. For SAPS-II scores between 46 and 60, ARDS risk showed a pronounced upward trend. Conclusion
The RF predictive model provides a reliable tool for assessing the risk of ARDS in AP patients and enhances model interpretability
through the SHAP method, aiding in clinical decision-making.
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Shapley additive explanations
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Acute pancreatitis (AP) is a common acute abdominal
condition characterized by acute inflammation of the
pancreas. Its incidence has been gradually increasing
worldwide, with an estimated 13 to 49 cases per 100,000
people each year [1]. Over the past decade, the number of

hospitalizations due to AP has increased by approximately
30%, and the annual healthcare costs related to this in the
United States alone have reached $2.6 billion [2]. The
overall mortality rate for AP is 1% to 5%, but
approximately 20% of patients with mild AP may progress
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to moderate severe acute pancreatitis (MSAP) or severe
acute pancreatitis (SAP), accompanied by pancreatic
necrosis and persistent organ dysfunction. In these cases,
the mortality rate can rise to 10% to 50% [3-5]. Acute
respiratory distress syndrome (ARDS) is often the first
organ dysfunction to occur in SAP patients, with an
incidence as high as 30%. It is also a major cause of early
death in AP patients [6-8]. Timely identification of high-
risk patients who may develop ARDS helps to reduce the
severity of the disease, improve prognosis, and lower
mortality.

With the rapid development of artificial intelligence
(Al) technology, machine learning has become
increasingly popular as a data analysis method due to its
powerful pattern recognition capabilities and ability to
handle complex data structures. In recent years, the
application of machine learning in the field of AP has been
growing, demonstrating good predictive performance in
disease diagnosis [9], severity assessment [10], and
complication prediction [11-12]. However, machine
learning models are often referred to as "black-box"
models due to their complex internal structures and
decision-making processes. Current research on AP
machine learning primarily focuses on model prediction
accuracy, while overlooking the high demand for
interpretability in the medical field. This limitation hinders
the generalization ability of these models and restricts their
application in disease diagnosis and prediction [10].
Lundberg et al. [13] proposed the Shapley additive
explanations (SHAP) method based on Shapley values
from game theory, which quantifies the contribution of
each feature to the prediction result and provides an
intuitive visual display.

Therefore, this study aims to use multicenter data to
train and validate a series of models based on machine
learning algorithms [including random forest (RF),
extreme gradient boosting (XGBoost), light gradient
boosting machine (LightGBM), decision tree (DT),
logistic regression (LR), support vector machine (SVM),
and K-nearest neighbors (KNN)], and perform least
absolute shrinkage and selection operator (LASSO)
regression analysis to select the best-performing model.
The goal is to provide a visual explanation of the model for
predicting the risk of ARDS in ICU patients with AP,

assisting clinicians in making timely intervention decisions.

1 Objects and Methods

1.1 Data Source

This study retrospectively extracted data from the
Medical Information Mart for Intensive Care v2.2
(MIMIC-1V v2.2) database (Dataset 1), which is a large,
single-center, de-identified public database developed by
the Laboratory for Computational Physiology at the
Massachusetts Institute of Technology (MIT). It contains
detailed clinical data from 53,150 patients who were
admitted to the ICU at the Beth Israel Deaconess Medical
Center (BIDMC) in Boston between 2008 and 2019. This

study has been approved through the NIH Collaborative
Training Program (Certificate Number: 60227322), and
the database access was granted. Additionally, 126 patients
with MSAP and SAP who were admitted to the ICU at the
Changshu Hospital Affiliated to Soochow University
between January 2019 and March 2024 were selected as an
external test set (Dataset 2). To ensure the protection of
patient information, data cleaning was performed. This
study was approved by the Ethics Committee of Changshu
No.1 People's Hospital (Approved No. L202402).

1.2 Study Population

Patients admitted with a diagnosis of AP were
selected from the MIMIC-IV database using the
International Classification of Diseases codes ICD-9
(577.0) and ICD-10 (K85%). The inclusion criteria for the
external test set population adhered to the Guidelines for
Diagnosis And Treatment of Acute Pancreatitis in China
(2021) [14]. The diagnostic criteria for ARDS followed the
Berlin Definition [15]. Exclusion criteria included: age less
than 18 years; ICU stay duration less than 24 hours; and
pre-existing respiratory failure prior to ICU admission.
The specific screening process is illustrated in Figure 1.

1.3 Data Extraction and Processing

Case data extraction from the public database was
performed using SQL query language within pgAdmin 4
software. All clinical and laboratory variables were data
collected within the first 24 hours after ICU admission. For
variables with multiple measurements, only the first
measured result was included in this study. A total of 50
variables were extracted from the database, including:

(1) Demographic characteristics: age, gender, race, height,
body mass, insurance type;

(2) Vital signs: heart rate, systolic blood pressure (SBP),
diastolic blood pressure (DBP), respiratory rate (RR),
temperature, oxygen saturation (SpO2);

(3) Laboratory data: white blood cell count (WBC),
hemoglobin (Hb), platelet count (PLT), albumin,
hematocrit, creatinine (SCr), C-reactive protein, alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
blood urea nitrogen (BUN), glucose, Na, K, Cl, Ca,
prothrombin time (PT), international normalized ratio
(INR), pH, partial pressure of carbon dioxide (PCO-), base
excess (BE), lactate, bicarbonate (HCO3);

(4) Functional scores: Glasgow Coma Scale (GCS) score,
Sequential Organ Failure Assessment (SOFA) score,
Simplified Acute Physiology Score II (SAPS II);

(5) Comorbidities: hypertension, diabetes, sepsis,
myocardial infarction, chronic obstructive pulmonary
disease (COPD), acute kidney injury;

(6) Treatment measures: continuous renal replacement
therapy (CRRT), mechanical ventilation, cardiopulmonary
resuscitation (CPR), heparin, aspirin, antibiotics, and
vasoactive drugs.

Variables collected by Changshu Hospital Affiliated
to Soochow University were identical to those listed above.
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Fig.1 Research flowchart

For data missing less than 5% of values, mean
imputation was used. For data missing 5% to 30% of
values, multiple imputation was applied. Variables with
missing values exceeding 30% were excluded from the
analysis to minimize bias. To reduce multicollinearity
among variables, Spearman rank correlation coefficients
were calculated, and variables with coefficients || > 0.8
(BUN, hematocrit, AST, PT) were removed. A total of 43
variables were ultimately included in the analysis.

1.4 Statistical Methods

Data analysis was conducted using Stata 16.0, R 4.3.2,
and Python 3.12.4 software. The processed MIMIC-IV
dataset was split using simple random sampling, with 70%
allocated to the training set and 30% to the internal
validation set. Data from the Changshu Hospital Affiliated
to Soochow University was used as the external test set.
The X +s was used to describe the normally distributed
continuous data, and independent sample #-tests were
applied for group comparisons. For skewed continuous
data, the M(Qr,Qu) was used, and the Mann-Whitney U
test was employed for inter-group comparisons.
Categorical variables were expressed as n (%), with the
chi-square test used for comparisons. Feature selection was
performed using LASSO regression. P<0.05 was

considered statistically significant.
1.5 Model Construction and Validation

LASSO regression was used to select variables after
dimensionality reduction. Seven machine learning
algorithms were employed to construct prediction models
in the training cohort, including RF, XGBoost, LightGBM,
DT, LR, SVM, and KNN. Five-fold cross-validation was
applied during model construction to prevent overfitting,
and grid search was used to adjust hyperparameters. The
receiver operating characteristic (ROC) curve was used as
the evaluation metric for the models, and the area under the
curve (AUC), accuracy, sensitivity, specificity, and F1
score (the harmonic mean of precision and recall) were
calculated. A calibration curve was plotted for model
consistency analysis, and decision curve analysis (DCA)
was applied to assess the clinical net benefit of the model.

1.6 Model Visual Interpretation

The SHAP method was used to reveal the importance
of individual features and the interactions between
different features by calculating the SHAP values for each
feature variable. Based on the aforementioned evaluation
metrics, the best diagnostic model was selected. Using
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Python 3.12.4 software, SHAP feature importance plots,
bee swarm plots, force plots, and partial dependence plots
(PDP) for key variables were created to provide a visual
interpretation of the model.

2 Results

2.1 Baseline Characteristics

Atotal of 983 AP patients were included in this study,

with 857 patients from the MIMIC-IV database and 202
(23.57%) with concurrent ARDS. The external test set
included 126 patients from the Changshu Hospital
Affiliated to Soochow University, with 26 (20.63%)
diagnosed with ARDS. The ARDS incidence rate was
similar between the two groups. Baseline characteristics of
both datasets are shown in Table 1. There was no
statistically significant difference in demographic features,
vital signs, laboratory data, functional scores, complications,
or treatment measures between the training set and internal

validation set (P>0.05), as shown in Table 2.
Tab.1 Comparison of baseline data between ARDS group and non-ARDS group of AP patients in different datasets

MIMIC Database External test set
Variable Non-ARDS group  ARDS group Z/t P value Non-ARDS group ARDS group Z/Mt P value
(n=655) (n=202) value (n=100) (n=26) value
Demographic Characteristics
Age [years ,M(Qr,0v)] 61(47,76) 58(46,69) 2230  0.026 52(40,66) 44(34,56) 1.595 0.111
Male [n(%)] 372(56.79) 125(61.88) 1.438  0.230 50(50.00) 15(57.69) 0.229  0.632
BMI [kg/m?, M(Q1,Q0)] 27.69(23.96,32.34) 31.12(26.90,37.04) 5.735 <0.001 20.91(19.38,24.10) 23.50(21.06,27.53) 2.607  0.009
Medical Insurance [r(%)] 222(33.89) 62(30.69) 0.576  0.448 35(35.00) 12(46.15) 0.673 0.412
Vital Signs
HR [beats/min, M(Q¢,0v)] 95(81,112) 103.5(88,119) 3.535 <0.001 100(80,116) 109(93,124) 1.707  0.088
DBP(mmHg, i + s) 128.90 +24.30 121.61£27.82 3.599  <0.001 127.34 + 25.06 120.04 +23.05 1413 0.165
SBP(mmHg, X + s) 73.57 +18.47 70.61£19.76 1.954  0.051 71.23+£17.96 67.77 £ 16.76 0.924  0.361
RR [beats/min, M(Q:,00)] 20(16,24) 22(18,28) 3.338 <0.001 19(15,24) 25(17,28) 2356  0.019
Temperature [°C, M(QL,0v)] 36.9(36.6,37.2) 37.0(36.5,37.4) 2252 0.074 36.8(36.6,37.2) 37.0(36.5,37.4) 0946  0.346
SpO: [%, M(QL,0v)] 97(94,99) 96(94,99) 2.570  0.024 96(94,98) 95(92,98) 1.283 0.201
Laboratory Tests [M(Qr,0v)]
WBC(x10°/L) 11.9(7.9,17.0) 13.7(9.9,20.0) 3461 <0.001 10.6(7.3,16.6) 12.9(10.1,22.4) 2.586  0.010
Hb(g/dL, i +s) 11.30 £2.30 11.4942.59 0423  0.338 11.45+2.10 11.20 +£2.32 0.497  0.622
PLT(x10°L) 186(132,254) 190(127,249) 0.208  0.836 174(132,234) 205(137,225) 0.805 0.423
Albumin (g/L) 3.1(2.7,3.5) 2.8(2.4,3.2) 6.047  <0.001 37752 320+7.1 3.834 <0.001
Creatinine (mg/dL) 1.0(0.7,1.5) 1.2(0.9,2.1) 4482 <0.001 1.0(0.7,1.5) 1.7(1.0,2.6) 2.530 0.011
ALT(u/L) 59(26,127) 42(23,118) 1.763  0.078 84(34,147) 45(24,130) 1.182  0.238
Glucose (mg/dL) 125(102,161) 134(104,173) 1.515  0.130 133(105,165) 128(107,197) 0.021 0.986
Na*(mmol/L) 138(135,141) 139(135,143) 2.570  0.010 138(135,141) 139(137,143) 1.673 0.095
K*(mmol/L) 4.0(3.6,4.4) 4.1(3.7,4.7) 2.579  0.010 4.03.6,4.4) 4.0(3.5,4.6) 0.042  0.969
Cl-(mmol/L) 104(100,108) 105(101,111) 3220  0.001 104(100,108) 108(102,112) 2202  0.028
INR 1.3(1.1,1.5) 1.3(1.2,1.6) 2911 0.005 1.2(1.1,1.4) 1.4(1.2,1.6) 2232 0.026
pH 7.38(7.32,7.43) 7.33(7.24,7.41) 5251 <0.001 7.38(7.31,7.43) 7.33(7.21,7.38) 2.208 0.027
PCOz(mmHg) 39(34,43) 42(35,48) 3.885 <0.001 38(34,42) 40(32,49) 0.673 0.503
BE(mmol/L) -1(-5,1) -3(-8,0) 3.133  0.002 -2(-6,0) -3(-10,0) 1.294  0.197
Lactic Acid (mmol/L) 1.7(1.2,2.5) 1.9(1.3,3.0) 2216  0.027 1.6(1.2,2.2) 2.3(1.3,3.3) 1.678 0.094
HCO3(mmol/L) 22(18,25) 21(17,25) 1.781  0.075 22(18,25) 19(16,23) 1.353 0.177
Function Score [M(Q1,Quv)]
GCS 15(14,15) 15(14,15) 0.164  0.870 15(14,15) 15(14,15) 0.345 0.075
SOFA 4(2,7) 8(5,12) 10.342  <0.001 4(2,7) 9(5,13) 3356 <0.001
SAPS 1T 31(22,42) 43(31,58) 8.751 <0.001 32(23,42) 48(38,62) 4269 <0.001
Complication [r(%)]
Hypertension 313(47.79) 91(45.05) 0.361  0.548 41(41.00) 10(38.46) <0.001  0.991
Diabetes 57(8.70) 17(8.42) 0.016  0.899 12(12.00) 1(3.85) 1.483 0.223
Sepsis 356(54.35) 169(83.66) 54.667 <0.001 35(35.00) 16(61.54) 4.981 0.026
Myocardial Infarction 10(1.53) 0 3.120 0.077 1(1.00) 0(0) 0.262  0.609
COPD 18(2.75) 8(3.96) 0414  0.520 3(3.00) 2(7.69) 1.192 0.274
Acute Kidney Injury 390(59.54) 172(85.15) 43.718 <0.001 58(58.00) 17(65.38) 0.211 0.646
Treatment Measures [n(%)]
CRRT 56(8.55) 56(27.72) 48.282 <0.001 32(32.00) 15(57.69) 4.777  0.029
Mechanical Ventilation 144(21.98) 126(62.38) 114.857 <0.001 32(32.00) 11(42.31) 0.571 0.450
Cardiopulmonary 9(1.37) 4(1.98) 0.380  0.538 1(1.00) 0 0.262  0.609
Resuscitation
Heparin 595(90.84) 194(96.04) 5.025  0.025 93(93.00) 24(92.31) 0.015 0.903
Aspirin 212(32.37) 64(31.68) 0.009  0.924 28(28.00) 9(34.62) 0.175 0.676
Antibiotics 543(82.90) 197(97.52) 26.782  <0.001 79(79.00) 26(100) 6.552 0.010
Vasoactive Drugs 116(17.71) 93(46.04) 65.667 <0.001 20(20.00) 15(57.69) 12.795 <0.001
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Tab.2 Comparison of baseline data of AP patients between training set and internal validation set

Variable Internal validation set (n=256) Training set (n=601) Z/¢*/t value P value
Demographic Characteristics
Age [years ,M(Qr,0v)] 63(47,75) 59(47,73) 1.013 0311
Male [#(%)] 144(56) 353(59) 0.359 0.549
BMI [kg/m?, M(Q1,00)] 28.20(24.32,33.60) 28.40(24.34,33.33) 0.161 0.869
Medical Insurance [r(%)] 97(37.89) 187(31.15) 3.420 0.064
Vital Signs
HR [beats/min, M(Q;,0v)] 95(81,113) 97(83,114) 1.143 0.253
DBP(mmHg, X + s) 126.09 +25.01 127.57 £ 25.50 0.678 0.498
SBP(mmHg, X * s) 72.54 + 18.68 73.01 + 18.88 0.342 0.733
RR [beats/min, M(Q.,0v)] 20.5(16,25) 20(17,25) 0.416 0.678
Temperature [°C, M(QL,0v)] 36.8(36.6,37.2) 36.9(36.6,37.3) 0.857 0.391
SpO: [%, M(QL,Qv)] 96(94,99) 97(94,99) 0.778 0.436
Laboratory Tests [M(QL,0v)]
WBC(x10%/L) 12.0(8.6,17.6) 12.4(8.2,17.8) 0.152 0.892
Hb(g/dL, X +s) 11.32+£2.39 11.35+£2.37 0.036 0.972
PLT(x10%L) 192(139,261) 185(127,250) 1.200 0.230
Albumin (g/L) 3.1(2.6,3.5) 3(2.6,3.5) 0.084 0.933
Creatinine (mg/dL) 1.1(0.7,1.7) 1(0.7,1.7) 0.699 0.485
ALT(u/L) 61(26,129) 54(25,118) 1.076 0.282
Glucose (mg/dL) 125(106,158) 127(101,167) 0.014 0.989
Na*(mmol/L) 138(135,141) 138(135,141) 1.380 0.168
K*(mmol/L) 4.0(3.6,4.4) 4.0(3.6,4.5) 0.243 0.808
Cl'(mmol/L) 104(100,108) 104(100,109) 1.283 0.200
INR 1.3(1.1,1.4) 1.3(1.1,1.5) 1.283 0.200
pH 7.37(7.3,7.42) 7.37(7.30,7.43) 0.211 0.833
PCO;(mmHg) 39(34,46) 39(34,44) 0.936 0.349
BE(mmol/L) -2(-6,0) -2(-6,1) 0.144 0.885
Lactic Acid (mmol/L) 1.7(1.1,2.8) 1.7(1.2,2.6) 0.201 0.841
HCO3 (mmol/L) 22(18,25) 22(18,25) 0.036 0.971
Function Score [M(Q1,0v)]
GCS 15(14,15) 15(14,15) 0.564 0.573
SOFA 5(3,7) 5(2,8) 1.014 0311
SAPS 11 33(24,43) 34(23,46) 0.277 0.782
Complication [n(%)]
Hypertension 117(45.70) 287(47.75) 0.226 0.634
Diabetes 23(8.98) 51(8.49) 0.011 0.916
Sepsis 147(57.42) 378(62.9) 2.041 0.153
Myocardial Infarction 3(1.17) 7(1.16) <0.001 0.993
COPD 7(2.73) 19(3.16) 0.013 0.908
Acute Kidney Injury 171(66.8) 391(65.06) 0.170 0.681
Treatment Measures [n(%)]
CRRT 33(12.89) 79(13.14) 0.010 0.920
Mechanical Ventilation 77(30.08) 193(32.11) 0.257 0.612
Cardiopulmonary Resuscitation 4(1.56) 9(1.50) 0.005 0.943
Heparin 239(93.36) 550(91.51) 0.603 0.437
Aspirin 87(33.98) 189(31.45) 0.419 0.517
Antibiotics 221(86.33) 519(86.36) <0.001 1.000
Vasoactive Drugs 60(23.44) 149(24.79) 0.113 0.737

2.2 Feature Selection and Model Evaluation

A total of 43 variables, after data preprocessing, were
incorporated into LASSO regression for automatic feature
selection. Using cross-validation, the optimal mean squared
error A was selected as 0.418 8, retaining 7 variables with
non-zero coefficients: BMI, RR, serum albumin, SOFA
score, sepsis, CRRT, and mechanical ventilation (Figure 2).
These features were used as predictor variables to construct
the prediction model. Figures 3A, 3B, and 3C display the
ROC curves for the training set, internal validation set, and
external test set, respectively. ROC curve analysis of the
internal validation set showed that among the 7 models, the
RF model had the best predictive performance for ARDS
occurrence in AP patients during ICU stay (AUC=0.780,
95%CI:0.721-0.846). The predictive performance ranking
was RF, XGBoost, LR, LightGBM, SVM, KNN, and DT
models, as shown in Figure 3B. The detailed performance
metrics of the 7 machine learning models for predicting

ARDS in AP patients in the internal validation set are shown
in Table 3.

Subsequently, the RF model was evaluated for
calibration and clinical applicability. The calibration curve
showed that the prediction probability of the RF model had
smaller deviation from the actual probability compared to
other models, indicating higher predictive accuracy
(Figure 4A). The DCA curve showed that when the
probability threshold was between 0.05 and 0.58, the DCA
curve did not intersect with the two extreme curves,
suggesting that using this model to predict ARDS risk in
AP patients and making clinical interventions resulted in a
good net benefit, demonstrating the model's clinical
applicability (Figure 4B). ROC curve analysis of the
external test set similarly showed that the RF model
(AUC=0.842, 95%CI: 0.751-0.917) outperformed other
machine learning models, consistent with the internal
validation set results from MIMIC, proving the RF model's
good generalizability (Figure 3C).



Sensitivity

04 Hf

00

Py

7 r Fr—
. L ; -
r '1’ 08
4 e .E (13
e -
=
, ]
" —— Random Forest (AUC = 0.970) g
~ . . 04
- 2 {AUC = 0.890) [72]

Chin J Clin Res, August 2025, Vol.38, No.8

42 39 33 20 7 2 43 43 43 43 42 39 38 33 27 17 12 6 4 2
.
©w - S
- d 1
o 3 = *
o -
=
= g | s
3 5 .
2 z i
Z 8 A
S §° | ahdllallll 0
Z
o RLITISSHRINRPRRT )
g
o
T T T T T T T
-7 -6 5 4 -3 -2 -9 -8 -7 -6 -4 -3 -2
lg(2) @ lg(4) ®

Note: A, clinical feature coefficient graph; B, cross-validation graph.

Fig.2 Variables screening by LASSO regression
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Fig.3 ROC curves of 7 machine learning models predicting concurrent ARDS in AP patients
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Fig.4 Calibration curves and DCA curves for predicting ARDS in AP patients by 7 machine learning models

Tab.3 Predictive value of 7 machine learning models for ARDS in AP patients

Model AUC 95%CI Accuracy Precision Sensitivity Specificity F1 Score
RF 0.780 0.721-0.846 0.781 0.556 0.333 0.918 0.417
XGBoost 0.765 0.692-0.835 0.770 0.522 0.200 0.944 0.289
LightGBM 0.744 0.674-0.817 0.781 0.553 0.350 0913 0.429
DT 0.690 0.622-0.762 0.766 0.500 0.333 0.898 0.400
LR 0.762 0.689-0.837 0.746 0.471 0.667 0.770 0.552
SVM 0.730 0.657-0.806 0.777 0.579 0.183 0.959 0.278
KNN 0.702 0.632-0.776 0.770 0.513 0.333 0.903 0.404
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2.3 Explanation of the RF Model Based on the
SHAP Algorithm

2.3.1 Global Sample Feature Explanation

The importance of each feature in the RF model’s
prediction results was shown in Figure 5. The variable
importance plot ranked features based on the average
absolute SHAP values for each feature. The top five
variables, in order of importance, were mechanical
ventilation, SOFA score, BMI, SpO,, and SAPS II score
(Figure 5A). The bee swarm plot revealed that among the
top five variables, the use of mechanical ventilation,
SOFA score, BMI, and SAPS II score increased the risk
of ARDS (indicated by the red high-density region)
(Figure 5B).

The top five important features were selected to plot
the PDP. Figure 6A showed that mechanical ventilation
increases the risk of ARDS from 16% to 37%. Figure 6B
indicated that when the SOFA score was less than 8, the
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Note: A, variable importance diagram; B, bee colony diagram.
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risk of ARDS remained stable at a relatively low level.
However, when the score exceeded 8, the risk
significantly increased. Figure 6C showed that the risk
of ARDS increases with BMI. Figure 6D revealed a non-
linear relationship between SpO> and ARDS risk when
SpO; was below 90%. The risk remained around 30%, but
as SpO; exceeded 90%, the risk decreased with
increasing SpO,. Figure 6E demonstrated that when the
SAPS II score was between 46 and 60, the risk of ARDS
significantly increased.
2.3.2 Single-Sample Prediction Feature Explanation
SHAP force plots were used to visualize the
contribution of individual features to the prediction.
Figure 7 showed two randomly selected cases from the
internal validation set. Case A (actual negative) had a
predicted risk of 10%, which was significantly lower than
the baseline. Case B (actual positive) had a predicted risk
of 71%, which was clearly higher than the baseline. Both
predictions aligned with clinical diagnoses, confirming the
high reliability of the model's individualized predictions.
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Ventilation = oMipenr sos ctrmantesns car e
SOFA
BMI
SpO;
SAPSII
ALT
PCO:
Albumin
Chloride
SBP

-
A R

Feature value

Lac ‘ :
Temperature E ol
Sepsis "'""

-0.1 0.0 0.1 0.2 03
SHAP value (impact on model output)

Fig.5 Variable importance diagram and bee colony diagram

B 055

—— PDP for ventilation —— POP for SOFA

050

045

partial Dependence
s o o o
5 8 & 3

e

s

—— PDP for BMI

Partial Dependence
e e
g E]

e

e

2

04
ventilation

06

20 a5

D gas —— PDP for SpO2

o
E

Partial Dependence

— POP for Sapsil

65 70 7 80

Spo2

85 %0 9 100

Note: A, ventilation; B, SOFA; C, BMI; D, SpO2; E, SAPS 1I.

60
Sapsii

Fig.6 PDP of the top 5 variables in importance ranking



o 8] W2 iR o

Chin J Clin Res, August 2025, Vol.38, No.8

A higher &2 lowe
f(x)
.10
-0.05 0.00 0.05 v.Lo 0.15

value

0.20 0.25 0.30 0.35 0.40

=

BMI =254 Sp02 = 100.0 SOFA = 3.0

B base value

0.1 0.2 0.3 0.4

ventilation = 0.0 ALT = 100.0 Sapsll = 29.0
higher 2 lower
f(x
0.71
0.5 0.6 0./ 0.8

o)) ) ) o ) | (({

CRRT = 0.0 Sp02 = 100.0 ventilation = 1.0 BMI = 32.1

Sapsll = 44.0

SOFA =12.0 ALT = 16.0

Note: A, patient instanced with predicted low ARDS risk; B, patient instanced with predicted high ARDS risk.
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3 Conclusion

This study demonstrates the superior performance of
the RF model, built using multicenter data, in predicting
the risk of ARDS in AP patients (internal validation set
AUC=0.780, external test set AUC=0.842). SHAP
analysis reveals that mechanical ventilation, SOFA score,
BMI, SpO,, and SAPS II score are the core factors
influencing the model's decision-making process, providing
actionable early warning indicators for clinical use.

Various laboratory indicators and clinical scoring
systems have been used to predict ARDS in AP patients.
Laboratory indicators such as procalcitonin, white blood
cell count, and albumin, as well as clinical scoring tools
like APACHE 11, Ranson score, and the bedside severity
index of acute pancreatitis (BISAP), have all been shown
to be associated with AP complicated by ARDS [4,6,16-
17]. However, these methods still have limitations in
predictive performance and assessment consistency,
making it difficult to meet the clinical demand for accurate
predictions. Furthermore, traditional regression models,
such as LR in generalized linear regression and Cox
regression in semiparametric survival analysis, although
easy to operate and relatively interpretable, often require
assumptions of linearity and homogeneity between input
variables, making it difficult to capture nonlinear
relationships  between variables and leading to
oversimplification of nonlinear interactions [18].
Additionally, these models tend to be less efficient when
analyzing large sample data, exhibiting higher error rates
compared to newer machine learning technologies. Their
high sensitivity to multicollinearity among predictors may
also degrade model performance [18-19].

In contrast, machine learning techniques can
establish automated data analysis workflows, efficiently
handle nonlinear and high-dimensional data, and uncover
complex interactions between variables, thereby
improving predictive accuracy [20]. With the widespread
use of large databases, machine learning has shown
excellent results in the clinical diagnosis and prognosis
assessment of pancreatitis. Ren et al. [21] built a model
using the MIMIC-1IV and eICU-CRD databases to predict
the in-hospital mortality of AP patients in the ICU, and the

results showed that the Gaussian Naive Bayes (GNB)
model achieved AUC values of 0.840 and 0.862 in the two
databases, respectively. Liu ef al. [12] conducted a study
using both the MIMIC-III and MIMIC-IV databases to
predict the risk of sepsis in AP patients, which also
confirmed that machine learning methods outperformed
traditional LR models and various scoring systems. This
study developed the model and performed internal
validation using the MIMIC-1V database. Feature selection
was conducted using LASSO regression, and based on this,
seven machine learning algorithms were developed,
ultimately determining that the RF model demonstrated
superior predictive performance in the early identification
of high-risk ARDS patients. The RF algorithm, by
integrating a large number of decision trees, outputs the
class vote result of the majority of trees in classification
tasks, demonstrating strong classification capability and
generalization performance, especially in imbalanced data
[22-24].The RF model was externally tested on data from
AP patients treated in the ICU at Changshu Hospital
Affiliated to Soochow University, and the results proved
that it also exhibited good predictive performance in
domestic patients.

Although machine learning algorithms have high
predictive accuracy, their "black-box" nature limits their
application in clinical settings [25]. Previous studies
predicting ARDS in AP patients using machine learning
techniques did not adequately quantify the influence of
feature variables on model output and lacked effective
methods to visualize these influences [26-27]. To
overcome this limitation, this study used SHAP analysis to
provide interpretability for the RF model, offering both
global and personalized explanations to better understand
the model's working mechanism. The results indicated that
the five most important variables in prediction were
mechanical ventilation, SOFA score, BMI, SpO; level, and
SAPS 1II score. These variables can be used as key
indicators for predicting ARDS in such patients. The PDP
intuitively displayed the impact of individual features on
the probability of ARDS, while the force plot achieved
prediction contribution analysis for different feature values
under randomly selected individual cases, helping
clinicians better understand the decision-making process
of the model.
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Limitations of this study: (1) The data was collected
from two databases, which may have regional and center
biases. (2) The external test set sample size was small and
requires multi-center, large-sample validation for
generalization. (3) Although LASSO regression effectively
reduced the number of features, it might overlook
potentially important variables, and different feature
selection methods may yield different results. (4) While
SHAP analysis provided model interpretability, the
explanation results depended on the model's prediction
accuracy and data quality, and might not fully reveal the
biological mechanisms behind complex interactions.
Clinical knowledge and experimental validation were
required for a more comprehensive understanding of the
predictive results.

In conclusion, this study constructed an early
prediction model for ARDS in AP patients using seven
machine learning methods, with the RF model exhibiting
the best predictive performance and generalization ability.
The introduction of SHAP analysis enhanced the model's
interpretability, providing clinicians with a reliable and
intuitive decision-making tool that helps in the early
identification of high-risk patients and optimization of
treatment strategies.
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care unit (ICU). Methods The relevant data of 857 AP patients from the Medical Information Mart for Intensive Care
IV v2.2 (MIMIC-IV v2.2) database were retrospectively analyzed and were randomly divided into a training set(n=601)
and an internal validation set(n=256) in a 7:3 ratio. Additionally, the relavent data of 126 AP patients from the ICU of
Changshu Hospital Affiliated to Soochow University from January 2019 to March 2024 were collected as an external test
set. Patients were categorized into ARDS and non - ARDS groups based on the occurrence of ARDS. Demographic
characteristics, initial vital signs, laboratory data, functional scores, and complications within the initial 24 -hour of
ICU admission were collected. Feature selection was performed using least absolute shrinkage and selection operator
(LASSO) regression. Predictive models were constructed using seven machine learning algorithms: random forest
(RF) , extreme gradient boosting (XGBoost) , light gradient boosting machine (LightGBM) , decision tree (DT) ,
logistic regression (LR) , support vector machine (SVM) , and K-nearest neighbors (KNN). Model performance was
evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis
(DCA). Finally, model interpretability was enhanced through Shapley additive explanations (SHAP) analysis. Results
In the MIMIC-1V database, 202 patients (23.57%) developed ARDS, while 26 patients (20.63% ) developed ARDS in
the external test set. Seven key variables were selected by LASSO regression from 43 variables in the training set to
construct the models. Among various machine learning models, the RF model demonstrated the best performance with an
area under the curve (AUC) of 0.780 (95%CI: 0.721-0.846)in the internal validation set and 0.842 (95%CI: 0.751—
0.917) in the external test set, outperforming the other six models. The calibration curve indicated that the predicted
probabilities from the RF model had the smaller deviation from the actual probabilities compared to other models,
showing the best overall predictive performance. SHAP analysis based on the RF model revealed that mechanical
ventilation, sequential organ failure assessment (SOFA) score, body mass index (BMI) , peripheral oxygen saturation
(Sp0.) and simplified acute physiology score (SAPS II ) were the main factors influencing ARDS risk. Mechanical
ventilation increased the risk of ARDS from 16% to 37% . When the SOFA score exceeded 8, the ARDS risk rose
significantly. The risk of ARDS elevated with increased BMI. While SpO, remained below 90%, ARDS risk stabilized at
30%; once SpO; surpassed 90%, the risk demonstrated a declining trend with further increases in SpO.. For SAPS- Il
scores between 46 and 60, ARDS risk showed a pronounced upward trend. Conclusion The RF predictive model
provides a reliable tool for assessing the risk of ARDS in AP patients and enhances model interpretability through the
SHAP method, aiding in clinical decision-making.

Keywords: Acute pancreatitis; Acute respiratory distress syndrome; Intensive care unit; Machine learning; Random
forest; Shapley additive explanations

Fund program: Suzhou Science and Technology Development Plan Project (SL.T2023006) ; Key Project of Changshu
Science and Technology Development Plan (CSWS202209) ; Respiratory Disease Special Project of China International
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Tab.1 Comparison of baseline data between ARDS group and non-ARDS group of AP patients in different datasets

- MIMIC i 4 ARG
' AEARDS41(n=655) ARDSAL(n=202) Z/¢iffi P AEARDSZI(n=100)  ARDSHI(n=26) Zi¢hfi P{H
UNEE= 313
AR R, M(QL,Q0) ] 61(47,76) 58(46,69) 2230 0.026 52(40,66) 44(34,56) 1.595 0.111
BHELHI(%) ] 372(56.79) 125(61.88) 1.438 0.230 50(50.00) 15(57.69) 0229 0.632
BMI[kg/m?, M(Q.,Qu)] 27.69(23.96,32.34) 31.12(26.90,37.04)  5.735 <0.001 20.91(19.38,24.10) 23.50(21.06,27.53)  2.607  0.009
B [41](%) ] 222(33.89) 62(30.69) 0.576 0.448 35(35.00) 12(46.15) 0.673 0412
A AAE
LF[Wmin, M(Q1,0Q0)] 95(81,112) 103.5(88,119) 3.535 <0.001 100(80,116) 109(93,124) 1.707  0.088
FF KK (mmHg, T+s) 128.90 + 24.30 121.61£27.82 3.599 <0.001  127.34 + 25.06 120.04 = 23.05 1413 0.165
Wi i (mmHg, x5 ) 73.57 + 18.47 70.61+19.76 1.954 0051  71.23+17.96 67.77 + 16.76 0.924 0.361
I [ YR /min, M(Q,Qu) ] 20(16,24) 22(18,28) 3.338 <0.001 19(15,24) 25(17,28) 2356 0.019
WiELc, M(Qu,Qu)] 36.9(36.6,37.2)  37.0(36.5,37.4) 2252 0.074 36.8(36.6,37.2) 37.0(36.5,37.4) 0.946  0.346
Sp0: [%, M(Q.,Qu)] 97(94,99) 96(94,99) 2570 0.024 96(94,98) 95(92,98) 1.283  0.201
S ERA[M(Qu, Qu) ]
FIAMETT £ (x10°/L) 11.9(7.9,17.0) 13.7(9.9,20.0) 3.461 <0.001  10.6(7.3,16.6) 12.9(10.1,22.4) 2.586  0.010
M£TEE A (g/dL, xts) 11.30 +2.30 11.49+2.59 0.423 0.338 11.45 £2.10 11.20 +2.32 0.497  0.622
1M/ TH£R (x10°/L) 186(132,254) 190(127,249) 0.208 0.836  174(132,234) 205(137,225) 0.805 0.423
MM (/L) 3.1(2.7,3.5) 2.8(2.4,32) 6.047 <0.001 377 +52 320+7.1 3.834 <0.001
WUEF (mg/dL) 1.0(0.7,1.5) 1.2(0.9,2.1) 4.482 <0.001 1.0(0.7,1.5) 1.7(1.0,2.6) 2,530 0.011
ALT(u/L) 59(26,127) 42(23,118) 1.763 0.078 84(34,147) 45(24,130) 1.182  0.238
A (mg/dL) 125(102,161) 134(104,173) 1.515 0.130  133(105,165) 128(107,197) 0.021  0.986
Na*(mmol/L) 138(135,141) 139(135,143) 2,570 0.010  138(135,141) 139(137,143) 1.673  0.095
K'(mmol/L) 4.0(3.6,4.4) 4.1(3.7,4.7) 2.579 0.010 4.0(3.6,4.4) 4.0(3.5,4.6) 0.042  0.969
Cl"(mmol/L) 104(100,108) 105(101,111) 3220 0.001  104(100,108) 108(102,112) 2202 0.028
INR 1.3(1.1,1.5) 1.3(1.2,1.6) 2911 0.005 1.2(1.1,1.4) 1.4(1.2,1.6) 2232 0.026
pH 7.38(7.32,7.43)  7.33(7.24,7.41) 5251 <0.001  7.38(7.31,7.43) 7.33(7.21,7.38) 2208  0.027
PCO.(mmHg) 39(34,43) 42(35,48) 3.885 <0.001 38(34,42) 40(32,49) 0.673  0.503
T4 (mmol/L) -1(-5,1) -3(-8,0) 3.133  0.002 -2(-6,0) -3(-10,0) 1.294  0.197
LR (mmol/L) 1.7(1.2,2.5) 1.9(1.3,3.0) 2216 0.027 1.6(1.2,2.2) 2.3(1.3,3.3) 1.678  0.094
HCO; (mmol/L) 22(18,25) 21(17,25) 1.781 0.075 22(18,25) 19(16,23) 1.353  0.177
Yiteirar 4, M(Qu,Qu) ]
GCS 15(14,15) 15(14,15) 0.164 0.870 15(14,15) 15(14,15) 0345 0.075
SOFA 4(2,7) 8(5,12) 10.342 <0.001 4(2,7) 9(5,13) 3.356 <0.001
SAPSII 31(22,42) 43(31,58) 8.751 <0.001 32(23,42) 48(38,62) 4269 <0.001
HRAE[1(%) ]
[ UINES 313(47.79) 91(45.05) 0.361 0.548 41(41.00) 10(38.46) <0.001  0.991
W IR 57(8.70) 17(8.42) 0.016 0.899 12(12.00) 1(3.85) 1.483  0.223
JHeBEAE 356(54.35) 169(83.66) 54.667 <0.001 35(35.00) 16(61.54) 4981  0.026
L JIAESE 10(1.53) 0 3.120 0.077 1(1.00) 0(0) 0.262  0.609
COPD 18(2.75) 8(3.96) 0.414 0.520 3(3.00) 2(7.69) 1.192 0274
FsXeaE gt 390(59.54) 172(85.15) 43.718 <0.001 58(58.00) 17(65.38) 0211  0.646
VRITREIE (%) ]
CRRT 56(8.55) 56(27.72) 48.282 <0.001 32(32.00) 15(57.69) 4777 0.029
HUAKE S 144(21.98) 126(62.38) 114.857 <0.001 32(32.00) 11(42.31) 0.571  0.450
AW [iF=iN 9(1.37) 4(1.98) 0.380 0.538 1(1.00) 0 0.262  0.609
% 595(90.84) 194(96.04) 5.025 0.025 93(93.00) 24(92.31) 0.015  0.903
] ] PC A 212(32.37) 64(31.68) 0.009 0.924 28(28.00) 9(34.62) 0.175  0.676
WAER 543(82.90) 197(97.52) 26.782 <0.001 79(79.00) 26(100) 6.552  0.010
A2y 116(17.71) 93(46.04) 65.667 <0.001 20(20.00) 15(57.69) 12.795 <0.001

4 : SpO, A KL I AR AR A
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Tab.2 Comparison of baseline data of AP patients between
training set and internal validation set
R N TR IESE WNHE  Zivn Pl &
(n=256) (n=601) I W
N EFHIE
AR M0, 00) ] 63(47,75)  59(47,73) 1.013 0.311
(%) ] 144(56) 353(59) 0359 0.549 L_og(x) -
BMI[kg/m’, M(Q1, Q)] 28.20 2840 0.161 0.869 43434343 423938 3327 1712642
(24.32,33.60) (24.34,33.33) T
R [(%) ] 97(37.89)  187(31.15)  3.420 0.064 4 105
AT IARAE = 7 Eiin
LE/min M(Qu,00)] 95(81,113)  97(83,114)  1.143 0.253 fé 0.95 | |[[TTTm
FFRIE (mmHg,x+s)  126.09 £25.01 127.57 = 25.50 0.678 0.498 1 Ml
W54 i (mmHg, x+5) 72.54 £18.68 73.01 = 18.88 0.342 0.733 0.85r LU ®
R [V /min, M(QL, Q) ] 20.5(16,25) 20(17,25) 0.416 0.678 9 -8 -7 -6 -5 -4 -3 -2
PRIRLC, M0, 00) ] 36.8(36.6,37.2)36.9(36.6,373) 0.857 0.391 Log(M)

TE : A I REFIE 2R KA 5 B S SUSRIE A o
B2 LASSO [al )it As i
Fig.2 Variables screening by LASSO regression

Sp0.L%,M(Q1,00) ] 96(94,99)  97(94,99) 0.778 0.436
S ERA [ M(Qu, Qu) ]
AT (x10°71) 12.0(8.6,17.6) 12.4(8.2,17.8) 0.152 0.892

MELA I (g/dL, x4s) 11.32+239 11.35+2.37 0.036 0.972 1.0
I /MRHE(x107L) - 192(139,261) 185(127,250) 1.200 0.230 08
HE M (g/L) 3.1(2.6,3.5)  3(2.6,3.5) 0.084 0.933
L (mg/dL) 1.100.7,1.7)  1(0.7,1.7) 0.699 0.485 % 0.6
ALT(U/L) 61(26,129) 54(25,118) 1.076 0.282 &
e 0.4 " — RF(AUC=0.970)
H B (mg/dL) 125(106,158) 127(101,167) 0.014 0.989 ’ —fﬁﬁ%’éﬁ&?gﬁc"ﬁ%)
Na'(mmol/L) 138(135,141) 138(135,141) 1.380 0.168 0.2 :%5?38—83?3
K (mmol/L) 4.0(3.6,4.4) 4.0(3.6,4.5) 0.243 0.808 T AVC08) ®
Cl (mmol/L) 104(100,108) 104(100,109) 1.283 0.200 0 02 04 06 08 10
INR 1.3(1.1,1.4) 1.3(1.1,1.5) 1.283 0.200 1-RESIE
pH 737(73,7.42)737(730,7.43) 0211 0.833 1.0}
PCO(mmHg) 39(34,46)  39(34,44) 0.936 0.349 sl
Tl 438 (mmol/L) -2(-6,0) 2(-6,1)  0.144 0.885
FLAE (mmol/L) 1.7(1.1,2.8)  1.7(1.2,2.6) 0.201 0.841 %0.6-
HCO{(mmol/I) 22(18,25)  22(18,25) 0.036 0.971 =
MRS 4, M(01,00)] | TG0 )
GCS 15(14,15)  15(14,15) 0.564 0.573 oalk y :HF?[A('UBLME)%% =0.744)
Sl — LR(AUC=0.762)
SOFA 5(3,7) 5(2,8) 1.014 0311 —SWATC0130) o
SAPST 33(24,43)  34(23,46) 0.277 0.782 0 02 04 06 08 1.0
BRI (%) ] 1455
fe i 117(45.70)  287(47.75)  0.226 0.634 1.0
BRI 23(8.98) 51(8.49)  0.011 0.916 08
JHeHERE 147(57.42)  378(62.9)  2.041 0.153
L LEESE 3(1.17) 7(1.16)  <0.001 0.993 0.6
COPD 7(2.73) 19(3.16)  0.013 0.908 g
AL 171(668)  391(65.06) 0170 0.681 041 7 —BEAuC0sa)
I FHEIEL(%) ] o2l BT s
~—LR(AUC=0.823)
CRRT 33(12.89)  79(13.14)  0.010 0.920 :;\N%gm g;gq; ©
HUMGEES 77(30.08)  193(32.11)  0.257 0.612 0 02 04 06 08 10
Ol R 4(1.56) 9(1.50)  0.005 0.943 15 g
i 239(93.36)  550(91.51)  0.603 0.437 YAE s BANERERIELE ; CASMEBIIIRLE
By =] DT AR 87(33.98)  189(31.45) 0.419 0.517 B3 7RIS S RN AP 5 )% ARDS [ ROC [l 2k
HiAER 221(86.33)  519(86.36)  <0.001 1.000 Fig.3 ROC curves of 7 machine learning models predicting
HIEMEZY 60(23.44)  149(24.79)  0.113 0.737 ARDS in AP patients
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Fig.4 Calibration curves and DCA curves for predicting
ARDS in AP patients by 7 machine learning models
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Fig.7 Attempt of random forest model

£3  THHLEEFE I BRIXE AP HH I & ARDS BN M
Tab.3 Predictive value of 7 machine learning models for
ARDS in AP patients
i AUC  95%CI  fERIE RS BUSIE Fp ) F11550
RF 0.780 0.721~0.846 0.781 0.556 0.333 0.918 0.417
XGBoost  0.765 0.692~0.835 0.770 0.522 0.200 0.944 0.289
LightGBM 0.744 0.674~0.817 0.781 0.553 0.350 0.913 0.429

DT 0.690 0.622~0.762 0.766 0.500 0.333 0.898 0.400
LR 0.762 0.689~0.837 0.746 0.471 0.667 0.770 0.552
SVM 0.730 0.657~0.806 0.777 0.579 0.183 0.959 0.278
KNN 0.702 0.632~0.776 0.770 0.513 0.333 0.903 0.404
309

ARG EE T 2 OB F RS 780 2 TR0
AP B35 IF % ARDS KUK Hh J 2R L O 1 i (PN 7 3
HEAR AUC=0.780, AR IR AR AUC=0.842) . SHAP#
ARHUIGE A SOFA $F43 . BMI,SpO, i1 SAPS 1T #F-43J&
MR AL AL O R R S IE R A T T #AE Y
TIEAER

H AT O A Z RS2 50 & fa b5 S PRIE 53 R G vk
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