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Abstract: Neutrophil extracellular traps (NETSs) is a network structure composed of DNA, histone and granular protein released

by neutrophils stimulated by their own or external pathogens. The correlation between NETs and the development and

progression of chronic kidney disease (CKD) has been concerned and studied, and an excess of NETs may indicate the

progression of CKD. Therefore, this article reviews the formation and clearance mechanism of NETs, as well as their mechanism

and clinical application in the pathogenesis of CKD, in order to provide new ideas for the application of NETs in early diagnosis,

disease progression prediction and treatment of CKD.
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Chronic kidney disease (CKD) is a chronic disease
caused by wvarious primary or secondary etiologies,
characterized by impaired renal function with gradual
progression of the condition, and symptoms lasting for more
than 3 months [1]. In 2017, there were 697.5 million cases of
CKD worldwide, with a prevalence rate of 9.1%, and it is
increasing year by year [2]. CKD is difficult to diagnose in the
early stage, with an awareness rate of only about 10%.
Moreover, it is difficult to cure during its development, with a
poor prognosis and a large number of comorbidities. CKD is
mainly classified into subtypes such as diabetic kidney disease
(DKD), lupus nephritis (LN), and membranous nephropathy
(MN), characterized by a decrease in glomerular filtration rate,
and may also present with symptoms such as proteinuria,
hypertension, edema, anemia, and hypoglycemia. Clinically,
serum creatinine is currently used as an indicator to evaluate
renal function [2-5].

When neutrophils are stimulated, they release a
reticular structure containing components such as DNA,
histones, and neutrophil granule proteins to capture
pathogens and other substances. This reticular structure is
called neutrophil extracellular traps (NETs) [6]. Excessive
formation or abnormal clearance of NETs can cause
dysfunction of the body, leading to kidney damage,
exacerbated inflammation, upregulation of coagulation
function, and the occurrence of diseases such as
autoimmune diseases, malignant tumors, thrombosis, and
inflammation. In some diseases, excessive NETs may
indicate the occurrence and development of the disease.
This article discusses the formation and elimination
mechanisms of NETs, as well as the pathogenic
mechanism of CKD, reviews the role of NETs in the

occurrence and development of CKD, and their potential
clinical application value in the early diagnosis and
prediction of disease progression of CKD, aiming to
provide new strategies for the treatment of CKD.

1 Formation and mechanism of action of NET's

NETs begin to form when neutrophils are stimulated by
various physiological stimuli. Antibodies, immune complexes,
chemokines [interleukin (IL)-8, tumor necrosis factor (TNF)-a,
interferon (IFN)-y], as well as calcium and potassium ions, can
induce the release of NETs by neutrophils [7]. The scaffold of
NETs is formed by decondensed and diffused chromatin
DNA, and neutrophils die due to the release of chromatin
DNA, a process termed NETosis [8-9]. Adhered to the NET
scaffold are citrullinated histones and primary/secondary
granule proteins, such as myeloperoxidase (MPO)-DNA,
neutrophil elastase (NE), cathepsin G, and lactoferrin [10-11].

Studies have shown that the generation of reactive
oxygen species (ROS) induced by reduced nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase is the
initiating step in NET scaffold formation. Thus, inhibiting
NADPH oxidase or neutralizing ROS can suppress NET
formation. Activation of NADPH oxidase converts oxygen
molecules into superoxide anion radicals (a type of ROS),
exacerbating ROS production. These ROS first convert to
hydrogen peroxide, which is then catalyzed by MPO to
form halogenated acids [12]. MPO, together with the
aforementioned granule proteins NE, cathepsin G, and
several other proteins, constitutes azurophilic granules.
Among these, NE and cathepsin G belong to serine
proteases. Hydrogen peroxide can induce the dissociation
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of azurophilic granules, releasing serine proteases upon
dissociation [13]. After translocating into the nucleus,
serine proteases cleave histones, promoting chromatin
decondensation in the nucleus and further facilitating NET
formation [13]. MPO also exerts a synergistic effect on the
promotion of chromatin decondensation by serine
proteases [14]. Therefore, reducing hydrogen peroxide
production, inhibiting MPO, and suppressing serine
proteases (e.g., NE, cathepsin G) can all inhibit NET
formation. During NET formation, large amounts of
histones are released into tissues, which are not only toxic
to pathogens but also cause significant tissue damage [15].
The abundant double-stranded DNA in NETs can be
degraded by DNases, then endocytosed by macrophages,
and further lysed under lysosomal mediation [16].
Abnormalities in NET clearance also lead to excessive
NET accumulation, further exacerbating inflammatory
states or organismal damage. The mechanisms of NET
formation and clearance are illustrated in Figure 1, which
was drawn by the authors using Figdraw.

Excessive NETs in the body, particularly components
like histones with cytotoxicity, cause tissue damage.
Meanwhile, the large quantities of proteins present activate
the body’s immune response, leading to immune
dysregulation and further contributing to the pathogenesis
of autoimmune diseases. Additionally, studies have shown
that DNA within NETs can enhance the procoagulant
activity of proteases, while histones can inhibit
thrombomodulin and plasma anticoagulant activity,
thereby inducing platelet aggregation and further
promoting microthrombus formation, fibrin deposition, and
platelet deposition in vivo [16-17]. By inducing
inflammatory responses, NETs release large amounts of
IL-4, IL-6, and TNF-a; these inflammatory factors exhibit

fibrinolytic resistance [18].
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Fig.1 Formation and clearance mechanism of NETs

2 Mechanism of action of NETs in the
development and progression of chronic
kidney disease

The main manifestations of CKD include decreased
glomerular filtration rate, as well as proteinuria,
hypertension, edema, anemia, and hypoglycemia.
Clinically, serum creatinine is currently used as an
indicator to evaluate renal function [3-5]. Excessive
formation or abnormal clearance of NETs can cause
systemic  dysfunction, leading to kidney damage,
exacerbated inflammation, upregulated coagulation
function, and the development of CKD. The level of NETs
is expected to serve as an auxiliary indicator for evaluating
the progression stage of CKD.

2.1 Mechanism of action of NETs in the
development and progression of DKD

DKD is the most common microvascular
complication of diabetes [19]. Its pathological features
include glomerular mesangial expansion,
glomerulosclerosis, and Kimmelstiel-Wilson nodules [20],
with clinical manifestations of massive proteinuria. A key
characteristic of DKD pathogenesis is elevated glucose
levels. Studies have shown that high glucose levels can
upregulate protein kinase C (PKC) activity, further
inducing increased NADPH oxidase levels, thereby
promoting excessive NET formation [21]. This process
induces oxidative stress, activates coagulation pathways,
and leads to fibrinolytic resistance [22-23]. Although there
is no direct evidence that DKD exerts fibrinolytic
resistance through NETSs, this effect is highly consistent
with the role of NETs. Additionally, studies have indicated
that in DKD, inflammatory signaling pathways and insulin
signaling pathways are activated, leading to the production
of numerous inflammatory factors that promote NET
release [24]. Research has demonstrated that under high
glucose conditions, glycolysis promotes macrophage
polarization into the pro-inflammatory M1 phenotype,
exacerbating inflammatory responses and releasing
extracellular DNA, which further aggregates and
accelerates disease progression [25]. Follow-up studies in
diabetic patients have found that the concentration of DNA
(a major component of NETS) is positively correlated with
the risk of developing DKD, suggesting that NET levels
may predict the onset of DKD [26-27].

2.2 Mechanism of action of NETs in the
development and progression of CGN

The pathogenesis of CGN is primarily associated with
immune-inflammatory injury. Thus, its role in NET
formation is mainly mediated by substances such as
inflammatory factors. For example, inflammatory factors
like IL-2 and IL-6 can stimulate neutrophils to release
NETs into the inflammatory microenvironment [28-29].
Therefore, in CGN, levels of NETs can partially indicate
the extent of kidney damage.

2.3 Mechanism of action of NETs in the
development and progression of systemic
autoimmune kidney disease
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Systemic autoimmune kidney disease is often
characterized by immune dysregulation. The deposition of
immune complexes composed of DNA and
anti-double-stranded DNA IgG antibodies in the kidneys is
also an important cause of nephritis. During NET
formation, DNA is oxidized by ROS, and oxidized DNA is
more resistant to nuclease degradation than unoxidized
DNA. Accumulation of oxidized DNA activates the
cGAS-STING signaling pathway, increases type I
interferon (IFN- I ) synthesis, and leads to immune
dysregulation [30-31]. Additionally, patients with systemic
autoimmune diseases have a high risk of coronary
atherosclerotic disease and thromboembolic complications.
Studies suggest that this may be caused by neutrophils and
NETs inducing microthrombus formation, fibrin and
platelet deposition, and inhibiting fibrinolysis in vivo [30].
Common systemic autoimmune kidney diseases include
lupus nephritis (LN) and anti-neutrophil cytoplasmic
antibodies associated vasculitis (AAV).

2.3.1 Mechanism of action of NETs in the development
and progression of LN

The pathogenesis of LN is mediated by NETs through
reactive oxygen species (ROS), DNase 1, NADPH oxidase,
and other factors. Studies have shown that a typical feature of
LN is the presence of a distinct population of low-density
granulocytes (LDGs) in patients, which markedly differs from
that in healthy individuals [32]. In LDGs, mitochondrial ROS
production induces excessive formation of NETs. Moreover,
NETs from neutrophils of LN patients contain more
pathogenic autoantigens than those from healthy individuals,
which also leads to severe tissue damage and activation of
plasmacytoid dendritic cells, thereby inducing the release of
IFN [33-34]. Additionally, in some LN patients, the inhibition
of DNase 1 activity impairs the clearance of NETs, resulting
in NET accumulation [28]. Furthermore, in histopathological
sections of LN patients, NET formation is clearly observed in
the tubulointerstitial compartment adjacent to the glomerular
capsule, indicating that NETs may be involved in capsular
rupture and crescent formation in LN patients [35].

2.3.2 Mechanism of action of NETs in the development
and progression of AAV

AAV is a type of ANCA-associated vasculitis that
affects small and medium-sized blood vessels and often
involves the kidneys, thus classified as a form of CKD [9].
In AAV patients, MPO, as a serum marker of AAV, can
activate neutrophils, leading to ROS production and NET
formation, ultimately causing vascular damage and the
development of extravascular inflammation [36-37]. AAV
is often associated with thrombosis, and thrombus tissues
are rich in NETs and their related molecules [38]. NETs
play an important role in this process: histones further
enhance thrombosis in a platelet-dependent manner, while
serine proteases such as NE promote thrombosis by
enhancing coagulation [39]. Immunostaining experiments
have shown the presence of NETs and NET-related
molecules in inflammatory areas, around fibrinoid necrosis
areas of the kidney in necrotizing glomerulonephritis, and
in the walls of lobular arteries in renal biopsy specimens of

AAV patients [40-41]. This strongly indicates that NETs
are involved in the pathogenesis of AAV.

2.4 Mechanism of action of NETs in the
development and progression of MN

MN is an immune complex-related glomerular
disease, clinically manifested as varying degrees of
proteinuria, hypoproteinemia, severe edema, and
hyperlipidemia. Its pathological features include
subepithelial immune complex deposition along the
glomerular capillary loops, diffuse thickening of the
glomerular basement membrane (GBM), granular
deposition of immunoglobulin G (IgG), complement
membrane attack complex, and antigen-antibody immune
complexes along the glomerular capillary loops, with
electron-dense deposits observed subepithelially [42].
Meanwhile, studies have shown that idiopathic MN may
also lead to thrombosis due to enhanced coagulation
function, weakened anticoagulant effect, and increased
microparticle expression [43]. Research has confirmed
that highly expressed NETs in the peripheral blood of
patients with idiopathic MN can reflect the degree of
renal endothelial injury. The high expression of NETs
causes endothelial damage, thus presenting massive
proteinuria and  hypercoagulable = manifestations,
indicating that NET-induced damage to endothelial cells
and renal tubular epithelial cells may exacerbate the
progression of idiopathic MN [44]. Additionally, studies
have shown that the more significant the elevation of
NETs, the higher the probability of thrombosis, which to
some extent indicates that NETs can timely monitor the
formation of hypercoagulable state in MN patients [44].

2.5 Mechanism of action of NETs in the
development and progression of hepatitis B
virus associated glomerulonephritis (HBV-GN)

HBV-GN is a disease occurring in parts of the body other
than the liver caused by hepatitis B virus (HBV) infection [45],
mainly clinically manifested as kidney damage. When HBV
enters the body and is not promptly cleared, it binds to
immunoglobulins in the blood to form immune complexes,
and the body also stressfully produces immune complexes in
the glomeruli [46]. Consequently, HBV and various immune
complexes collectively stimulate neutrophils to generate a
large amount of NETSs. Existing epidemiological data also
indicate that HBV-associated MN ranks second among the
etiologies of secondary MN in China [47]. Therefore, the
pathogenesis of HBV-GN can promote the release of NETSs
by exacerbating the accumulation of immune complexes.
Hence, during the treatment of HBV-GN patients, attention to
immune complexes, their induced immune dysfunction, and
the level of NETSs can provide a basis for disease diagnosis
and treatment to a certain extent.
2.6 Mechanism of action of NETs in the

development and progression of

Henoch-Schonlein purpura nephritis (HSPN)
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Purpura is a systemic vasculitis, among which
Henoch-Schonlein purpura is a hemorrhagic disease
caused by immune abnormalities. Due to its high
probability of causing kidney damage, this disease is
termed HSPN [48]. One of the diagnostic criteria for
HSPN is the histological features of leukocytoclastic
vasculitis mainly characterized by IgA immune complex
deposition or chronic glomerulonephritis [48], indicating
the important role of IgA in its disease progression.
Furthermore, studies have shown that leukotriene B3 and
B4 can serve as prognostic markers for HSPN [49], and
these inflammatory factors also have the effect of
inducing NET release.

3 Clinical application of NETs in CKD treatment

In CKD, enhanced formation or impaired clearance
of NETs promotes the progression of inflammation, shifts
the body into a hypercoagulable state, and exacerbates
renal endothelial injury. In in vitro studies, key targets
such as NADPH oxidase, ROS, MPO, DNase 1, as well
as various inflammatory factors and chemokines, have
been used to investigate the relationship between the
disease and NETosis. However, these mechanisms have
not been translated into clinical treatments. In clinical
studies, NET levels are currently detected using methods
such as microscopy, enzyme-linked immunosorbent assay
(ELISA), Western blotting, and flow cytometry [50]. Due
to the lack of unified standards, the assessment of NET
formation varies in specificity depending on the method
used [51]. Future research on the role of NETs as
biomarkers in CKD progression will likely focus on the
identification of specific NET-related molecules, and the
development of proteomics has made this possible [52].
Additionally, the new technology of high content
screening (HCS) will also enhance the potential clinical
utility of NETs [53]. Therefore, further investigation into
the correlation between NETs and CKD progression, their
mechanisms of action, and the potential value of NETSs in
early diagnosis and prediction of CKD progression may
provide new insights and strategies for CKD, which is
difficult to diagnose and has a poor prognosis.

4 Conclusion

Accumulating evidence indicates that excessive
formation or impaired clearance of NETs has high
clinical relevance to the pathogenesis of CKD. Starting
from the formation and clearance mechanisms of NETs,
this article reviews potential targets for regulating NET
levels. In summary, this article reviews NETs and their
mechanisms of action in CKD, and discusses their
clinical application prospects in CKD. The potential value
of NETs in early diagnosis and prediction of disease
progression is foreseeable, and they hold distinct
diagnostic and therapeutic significance especially for
CKD, which is difficult to diagnose, refractory to
treatment, and has a poor prognosis.
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Abstract: Neutrophil extracellular traps (NETs) is a network structure composed of DNA, histone and granular protein released by

neutrophils stimulated by their own or external pathogens. The correlation between NETs and the development and progression of

chronic kidney disease (CKD) has been concerned and studied, and an excess of NETs may indicate the progression of CKD.

Therefore, this article reviews the formation and clearance mechanism of NETs, as well as their mechanism and clinical application in

the pathogenesis of CKD, in order to provide new ideas for the application of NETs in early diagnosis, disease progression prediction

and treatment of CKD.
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Fig.1 Formation and clearance mechanism of NETSs
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