

Cite as: Wang TY, Wu J, Xuan JZ, Wang Y. *Shenshuaining* Tablet combined with dapagliflozin in the treatment of stage III-IV diabetic kidney disease [J]. Chin J Clin Res, 2025, 38(9): 1346-1349.

DOI: 10.13429/j.cnki.cjcr.2025.09.010

Shenshuaining Tablet combined with dapagliflozin in the treatment of stage

III-IV diabetic kidney disease

WANG Tianyi*, WU Jun, XUAN Jianzong, WANG Yu

*Department of Nephrology, Anqing First People's Hospital of Anhui Medical University, Anqing, Anhui 246000, China Corresponding author: WU Jun, E-mail: 13866039891@163.com

Abstract: Objective To explore the effect and safety of Shenshuaining Tablet combined with dapagliflozin in the treatment of patients with stage III-IV type 2 diabetes mellitus (T2DM) complicated with diabetic kidney disease (DKD). Methods A total of 81 patients with stage III-IV T2DM complicated with DKD who were treated at Anging First People's Hospital of Anhui Medical University from August 2022 to January 2024 were prospectively selected as the research subjects and randomly divided into the control group (n=40) and the combination group (n=41). The control group was treated with dapagliflozin (10 mg/d). The combined group was treated with Shenshuaining Tablets (4 tablets each time, 3 times a day) combined with dapagliflozin (10 mg/d). The treatment course for both groups was 12 weeks. The effects of the two groups of patients after treatment were compared. The changes in renal function indicators (serum creatinine, cystatin C, blood urea nitrogen), blood lipids (total cholesterol, triglycerides), inflammatory indicators (interleukin-6, C-reactive protein, tumor necrosis factor- α) levels before and after treatment were compared, and the safety of medication during the treatment period was evaluated between the two groups. Results After treatment, the total effective rate of the combination group was higher than that of the control group (92.68% vs 72.50%, χ^2 =5.769, P=0.016). After treatment, renal function indicators, blood lipid indicators, and inflammatory indicators in both groups decreased, and compared with the control group, the combination group showed more significant improvement (P<0.05). During the treatment period, there was no statistically significant difference in the incidence of side effects between the combination group and the control group (14.63% vs 10.00%, χ^2 =0.402, P= 0.526). Conclusion The combination of Shenshuaining Tablets and dapagliflozin has a good clinical efficacy in the treatment of stage III-IV T2DM patients with DKD, and can further improve renal function, blood lipids, and inflammatory factor levels.

Keywords: Shenshuaining Tablet; Dapagliflozin; Diabetic kidney disease; Renal function; Blood lipid; Inflammatory indicator; Side effect; Type 2 diabetes mellitus

Fund program: Anhui Province Chinese Medicine Inheritance and Innovation Research Project (2022CCYB12); Anhui Medical University Teaching Hospital Research Special Project (WK2023JXYY013)

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD) [1]. DKD has no obvious symptoms in the early stage. After entering the overt proteinuria stage, the rate of progression to ESRD is approximately 14 times that of other renal lesions. Once DKD progresses to ESRD, it will cause irreversible damage to renal function. Stage III-IV DKD is mainly characterized by progressive increase in microalbuminuria and progressive decrease in glomerular filtration rate. Timely intervention may reverse renal function damage, making it the optimal time for DKD treatment [2-3]. Clinically, sodium-glucose cotransporter 2 inhibitors are recommended as first-line medication for DKD. Dapagliflozin, as a representative drug among them, has not shown ideal therapeutic effect on DKD [4]. Traditional Chinese medicine holds that the pathogenesis of DKD is mainly qi-yin deficiency and blood stasis obstructing collaterals [5]. Shenshuaining Tablets is a Chinese patent medicine with good effects of promoting blood circulation and removing blood stasis, and replenishing gi and strengthening the spleen, but its efficacy in DKD has not been clarified [6]. This study investigates the efficacy and safety of Shenshuaining Tablets combined with

dapagliflozin in the treatment of patients with stage III-IV type 2 diabetes mellitus complicated with DKD, and the results are reported as follows.

1 Materials and methods

1.1General information

The study subjects were 81 patients with stage III-IV type 2 diabetes mellitus complicated with DKD who were admitted to the Anqing First People's Hospital of Anhui Medical University. They were divided into a control group (n=40) and a combined group (n=41) using the random number method.

Inclusion criteria: (1) Met the diagnostic criteria for type 2 diabetes mellitus [7]; (2) Met the diagnostic criteria for DKD [8] with stage III-IV; (3) Aged ≥18 years; (4) Signed the informed consent form.

Exclusion criteria: (1) Psychiatric disorders; (2) Other kidney diseases; (3) Severe heart, liver, or lung dysfunction; (4) Pregnancy or lactation; (5) Other types of diabetes mellitus; (6) Received dialysis or related treatment for kidney disease in the past 3 months; (7) Malignant

tumors; (8) Hematological or immune system diseases.

There was no statistically significant difference in baseline data between the two groups (P>0.05), as shown in **Table 1.** This study was approved by the Ethics Committee of Anqing First People's Hospital.

Tab.1 Comparison of general data between two groups

Item	Combined group (n=41)	Control group (n=40)	χ²/t value	P value
Gender (case)				
Male	25	28	0.729	0.393
Female	16	12	1.250	0.215
Age (years)	44.24±5.32	45.79±5.83	0.624	0.534
Disease stage (case)				
Stage III	30	23	2 100	0.120
Stage IV	11	17	2.198	0.138

1.2 Treatment methods

Both groups received conventional treatments after admission, including maintaining water and electrolyte balance, regulating blood lipids, lowering blood pressure, anti-infection, etc. Additionally, both groups were given oral Dapagliflozin Tablets (manufactured by Beijing SL Pharm, specification: 10 mg, H20233316) at a dosage of 1 tablet/time, once daily. On this basis, the combined group was additionally given oral *Shenshuaining* Tablets (manufactured by Qinhuangdao Shanhaiguan Pharmaceutical, Z20060226) at a dosage of 4 tablets/time, three times daily. Both groups were treated for 12 weeks.

1.3 Observation indicators

(1) Clinical efficacy [9].

- □Markedly effective: Urinary albumin excretion rate (UAER) decreased by ≥1/2, blood glucose returned to or approached normal levels, and clinical symptoms were significantly relieved;
- □Effective: UAER decreased by 1/5 to 1/2, blood glucose levels decreased significantly, and clinical symptoms were alleviated;
- □ Ineffective: UAER decreased by ≤1/5, with basically no changes in blood glucose levels and clinical symptoms;

- □Total effective rate = (Total cases Ineffective cases)/Total cases × 100%.
- (2) Detection indicators. Peripheral venous blood was collected from patients before and after treatment, and serum was separated. Automatic biochemical analyzer was used to determine serum creatinine, cystatin C, blood urea nitrogen, total cholesterol, and triglycerides. Enzyme-linked immunosorbent assay (ELISA) was used to measure interleukin (IL)-6, C-reactive protein (CRP), and tumor necrosis factor (TNF)-α.
- (3) Safety analysis. Adverse reactions such as dizziness, headache, nausea and vomiting, skin allergy, and diarrhea during treatment were recorded.

1.4 Statistical methods

SPSS 24.0 statistical software was used to process the data. Measurement data conforming to normal distribution were expressed as $\overline{x} \pm s$ and analyzed by *t*-test; count data were expressed as cases (%) and analyzed by χ^2 test. A *P* value <0.05 indicated a statistically significant difference.

2 Results

2.1 Comparison of efficacy between two groups

After treatment, in the combined group, there were 21 cases of markedly effective, 17 cases of effective, and 3 cases of ineffective; in the control group, there were 20 cases of markedly effective, 9 cases of effective, and 11 cases of ineffective. The total effective rate of the combined group was higher than that of the control group, and the difference was statistically significant (92.68% vs 72.50%, χ^2 =5.769, P=0.016).

2.2 Comparison of renal function before and after treatment between two groups

After treatment, the levels of serum creatinine, cystatin C, and blood urea nitrogen decreased in both groups, and compared with the control group, the combined group had lower levels (*P*<0.05). [**Table 2**]

Tab.2 Comparison of renal function levels between two groups ($\chi \pm s$)

Coorn	Serum creatin	ine (μmol/L)	Cystatin (C (mg/L)	Blood urea nitrogen (nmol/L)	
Group	Before treatment	After treatment	Before treatment	After treatment	Before treatment	After treatment
Combined group(n=41)	141.81±23.23	68.63 ± 14.79^a	3.08 ± 0.40	1.36 ± 0.24^{a}	13.80±2.01	7.53±1.25 ^a
Control group(n=40)	140.64±23.59	$86.35{\pm}16.84^{a}$	3.12±0.28	1.77 ± 0.24^a	12.65±2.33	9.49±1.64a
t value	0.225	5.035	0.520	7.687	2.380	6.059
P value	0.823	< 0.001	0.604	< 0.001	0.020	< 0.001

Note: Compared with before treatment in the same group, ^aP<0.05.

2.3 Comparison of blood lipid levels before and after treatment between the two groups

After treatment, the blood lipid levels decreased in both groups (P<0.05). Compared with the control group, the combined group had lower blood lipid levels after treatment (P<0.05). [**Table 3**]

2.4 Comparison of changes in inflammatory factor before and after treatment between two groups

After treatment, the inflammatory factor levels decreased in both groups, and the inflammatory factor levels in the combined group were lower than those in the control group after treatment (P<0.05). [Table 4]

2.5 Comparison of adverse reactions between two groups

During treatment, there were 6 cases of adverse reactions in the combined group (2 cases of dizziness and headache, 1 case of nausea and vomiting, 2 cases of diarrhea); and 4 cases in the control group (1 case of dizziness and headache, 2 cases of nausea and vomiting, 1 case of urinary tract infection, 1 case of diarrhea). There was no statistically significant difference in the incidence of adverse reactions between the combined group and the control group (14.63% vs 10.00%, χ^2 =0.402, P=0.526).

Tab.3 Comparison of blood lipid levels between two groups

$(\text{mmol/L}, ^{\lambda} \pm s)$							
	Total ch	olesterol	Trigly	cerides			
Group	Before	After	Before	After			
	treatment	treatment	treatment	treatment			
Combined group	5.64 ± 1.23	$3.17{\pm}0.46^a$	2.98 ± 0.44	1.14 ± 0.18^{a}			
(n=41)							
Control group	5.37 ± 1.30	$4.08{\pm}0.29^{a}$	3.11 ± 0.36	1.75 ± 0.31^{a}			
(n=40)							
t value	0.960	10.621	1.453	10.863			
P value	0.340	< 0.001	0.150	< 0.001			

Note: Compared with before treatment in the same group, ^a*P*<0.05.

Tab.4 Comparison of inflammatory indicator levels between two groups ($\bar{x} \pm s$)

Group	IL-6(p	IL-6(pg/mL) $CRP(mg/L)$ $TNF-\alpha(pg/mL)$		CRP(mg/L) TNF-6		pg/mL)
	Before treatment	After treatment	Before treatment	After treatment	Before treatment	After treatment
Combined group(n=41)	13.72±2.56	4.82±0.32a	14.14±2.35	6.74±1.17a	51.36±6.77	32.76±4.42a
Control group(n=40)	11.59±1.64	$7.58{\pm}1.24^a$	14.23±2.32	9.61 ± 1.80^{a}	51.81±6.25	44.28±5.49a
t value	4.446	13.741	0.173	8.529	0.311	10.415
P value	< 0.001	< 0.001	0.862	< 0.001	0.757	< 0.001

Note: Compared with before treatment in the same group, ^a*P*<0.05.

3 Discussion

In patients with diabetes, long-term hyperglycemia leads to impairment of the redox system, with massive reactive oxygen species (ROS) generated from renal tubule and glomerulus-related cells. This causes pathological expansion of the glomerular basement membrane, impairs renal microcirculation, induces proteinuria, and triggers DKD [10-11]. If DKD progresses to ESRD, it seriously threatens patients' life and health; thus, timely treatment is necessary [12].

Clinical Western medicine treatment for DKD mainly uses hypoglycemic drugs, but its efficacy needs to be improved [13]. With the development of modern traditional Chinese medicine (TCM), integrated traditional Chinese and Western medicine therapy has become a new approach for treating DKD [14]. In TCM theory, DKD is categorized under "Niaozhuo", "Shuizhong", "Xulao", and "Guange". Prolonged illness leads to qi and yin deficiency, blood stasis obstruction, further impairing qi and blood circulation and causing spleen-kidney deficiency, thereby forming blood stasis syndrome. Therefore, treatment should focus on invigorating the spleen and kidney, removing blood stasis, and draining turbidity [15-17].

This study showed that the total effective rate of the combined group was higher than that of the control group after treatment, indicating that *Shenshuaining* Tablets combined with dapagliflozin can enhance therapeutic efficacy. *Shenshuaining* Tablets are composed of multiple Chinese herbs. *Rhubarb* promotes blood circulation to remove stasis, unblocks meridians, and purges the bowels to drain turbidity; *Radix Pseudostellariae* replenishes qi and invigorates the spleen; Pinelliae Rhizoma dries dampness; *Coptidis Rhizoma* clears heat and detoxifies; *Pericarpium Citri Reticulatae* regulates qi and aids transportation; *Salviae Miltiorrhizae Radix et Rhizoma* and

Carthami Flos resolve blood stasis, relieve pain, and activate blood circulation to unblock meridians; Achyranthis Bidentatae Radix promotes qi circulation and tonifies the kidney; Poria induces diuresis, excretes dampness, invigorates the spleen, and harmonizes the stomach. The combined action of these herbs enables blood circulation promotion, blood stasis resolution, qi replenishment, and spleen invigoration.

Compared with the control group, renal function indicators in the combined group improved more significantly, suggesting that combined Shenshuaining Tablets with dapagliflozin can further improve renal function compared with dapagliflozin monotherapy. Modern pharmacological studies have confirmed that Carthami Flos and Salviae Miltiorrhizae Radix et Rhizoma can promote local renal blood perfusion and increase glomerular filtration rate; Radix Pseudostellariae contains vitamins, polysaccharides, saponins, and other active substances that improve renal function; polysaccharide components in Poria enhance cellular immune function and repair glomerular basement membrane damage; Rhubarb inhibits mesangial proliferation and delays glomerulosclerosis. The combined use of these herbs effectively improves renal function.

Dyslipidemia exists in DKD patients, leading to massive production of intrarenal vasoconstrictive substances, which easily increases glomerular blood viscosity, induces glomerulosclerosis, and further impairs renal function [18]. In this study, compared with the control group, the combined group had lower blood lipid levels after treatment, confirming that *Shenshuaining* Tablets combined with dapagliflozin can regulate blood lipid levels. This may be attributed to the blood lipid-regulating or lowering effects of *Rhubarb*, *Salviae Miltiorrhizae Radix et Rhizoma*, and *Achyranthis Bidentatae Radix*.

Inflammatory response plays an important role in the progression of DKD. Glucose metabolism disorder

increases ROS, promotes the expression of inflammatory factors, thereby damaging renal tissues, accelerating renal fibrosis, and aggravating the condition [19]. This study found that compared with the control group, the combined group had lower blood lipid indicators, suggesting that Shenshuaining Tablets combined with dapagliflozin can inhibit inflammatory response. Rhubarb extract can inhibit expression of inflammatory factors: Pseudostellariae, Achyranthis Bidentatae Radix, and Poria enhance immune function and exert anti-inflammatory effects; Salviae Miltiorrhizae Radix et Rhizoma also has certain anti-inflammatory effects. During treatment, there was no significant difference in the incidence of adverse effects between the two groups, indicating that Shenshuaining Tablets do not increase drug adverse effects and have good safety.

In conclusion, for patients with stage III-IV type 2 diabetes mellitus complicated with DKD, *Shenshuaining* Tablets combined with dapagliflozin can enhance therapeutic efficacy, improve renal function, reduce blood lipids and inflammatory response, and have good safety, making it a promising treatment option.

Conflict of interest None

Reference

- Ueki K, Sasako T, Okazaki Y, et al. Multifactorial intervention has a significant effect on diabetic kidney disease in patients with type 2 diabetes[J]. Kidney Int, 2021, 99(1): 256-266.
- [2] Li H, Liu JL, Niu C, et al. Effects of yishen Huashi Granule on diabetic nephropathy and its influence on renal tubular injury[J]. J Rare Uncommon Dis, 2020, 27(3): 51-54. [In Chinese]
- [3] Yu TX, Wang C. Clinical efficacy of xiaobai yansheng formula on proteinuria in patients with III-IV DKD[J]. World J Integr Tradit West Med, 2023, 18(7): 1396-1400. [In Chinese]
- [4] Liu SS, Zhang F, Sun LL, et al. Effects of Yiqi Yangxue Huoxue method combined withdapagliflozin on glomerular filtration function, blood glucose and NO/ET balance in patients with diabetic nephropathy[J]. J Sichuan Tradit Chin Med, 2023, 41(10): 131-136. [In Chinese]
- [5] Wang QR, Yu HJ. Effect of Yiqi Tongluo Xiaozheng Decoction on renal function and urinary podocyte injury markers in patients with diabetic nephropathy[J]. J Clin Pathol Res, 2023, 43(3): 469-476. [In Chinese]
- [6] Chen JB, Hu R, Li CJ, et al. Effect of renal attenin capsule combined with levkanetine on RBP4 and BMP-7 in patients with stage 3 to 4 chronic kidney disease[J]. J Pract Med, 2022, 38(13): 1671-1675. [In Chinese]

- [7] Chinese Diabetes Society. Guidelines for prevention and treatment of type 2 diabetes in China (2017 edition)[J]. Chin J Diabetes Mellit, 2018, 10(1): 4-67. [In Chinese]
- [8] Chinese Society of Endocrinology. Expert consensus on clinical diagnosis of adult diabetic nephropathy in China[J]. Chin J Endocrinol Metab, 2015, 31(5): 379-385. [In Chinese]
- [9] Yang NZ, Liu XS. Diagnostic, syndrome differentiation and therapeutic evaluation criteria of diabetic nephropathy (trial scheme)[J]. Shanghai J Tradit Chin Med, 2007, 41(7): 7-8. [In Chinese]
- [10] Barrera-Chimal J, Lima-Posada I, Bakris GL, et al. Mineralocorticoid receptor antagonists in diabetic kidney disease - mechanistic and therapeutic effects[J]. Nat Rev Nephrol, 2022, 18(1): 56-70.
- [11] Wang H, Liu DW, Zheng B, et al. Emerging role of ferroptosis in diabetic kidney disease: molecular mechanisms and therapeutic opportunities[J]. Int J Biol Sci, 2023, 19(9): 2678-2694.
- [12] Guo YB, Zhang XY, Guo QB, et al. Evaluated value of BOLD MRI on renal function impairment in patients with type 2 diabetic nephropathy[J]. Chin J CT MRI, 2022, 20(4): 121-123, 168. [In Chinesel
- [13] Huang C, Shao YX, Wu Y, et al. Effect of Calcitriol combined with Olmesartan Medoxomil in the treatment of early type 2 diabetes nephropathy and its mechanism on nephrotic podocyte damage[J]. China Med Her, 2022, 19(15): 79-82. [In Chinese]
- [14] Jiang MQ, Ye BH, Ren SL, et al. Clinical efficacy of *Yishen Jiangtang* Yin in the treatment of diabetic nephropathy stage III with qi-Yin deficiency syndrome and its effect on ROS-NLRP3-IL-1β signaling pathway[J]. Guid J Tradit Chin Med Pharm, 2022, 28(2): 61-65. [In Chinese]
- [15] Li RW, Liu BL, Ji LM, et al. Effects of Shenshuaining Granules combined with insulin glargine on renal function, blood glucose and oxidative stress in patients with diabetic nephropathy[J]. Prog Mod Biomed, 2021, 21(14): 2726-2729. [In Chinese]
- [16] Shen JF, Hu LW, Hu F, et al. Clinical effects of *Jianpi yishen Yangyin* formula in treating type 2 diabetic nephropathy stage IV[J]. Inf Tradit Chin Med, 2021, 38(5): 65-68. [In Chinese]
- [17] Jiang TT, Zeng YJ, Fei M. Study on the clinical efficacy of *Huangkui* capsule combined with western medicine on patients with diabetic nephropathy in stage III, IV and its mechanism of inhibiting oxidative stress in renal tissue[J]. World J Integr Tradit West Med, 2021, 16(12): 2320-2324, 2328. [In Chinese]
- [18] Luo X, Wei SH, Wei ZH. Clinical effect of Shenshuaining Capsule combined with atorvastatin in the treatment of diabetic nephropathy[J]. Guangxi Med J, 2022, 44(13): 1462-1466. [In Chinese]
- [19] Shan H, Wu YX. Effect of Shenshuaining capsule combined with telmisartan on vascular endothelial function and inflammatory factors in patients with diabetic nephropathy[J]. J Chengdu Med Coll, 2022, 17(1): 67-70. [In Chinese]

Submission Received: 2025-03-12/Revised: 2025-04-27

· 论 著·

肾衰宁片联合达格列净治疗Ⅲ~IV期糖尿病肾病

王天义1, 吴军1, 宣建宗2, 王昱3

- 1. 安徽医科大学附属安庆第一人民医院肾内科, 安徽 安庆 246000:
- 2. 天长市中医院肾内科, 安徽 滁州 239300; 3. 皖南医学院, 安徽 芜湖 241002

关键词: 肾衰宁片; 达格列净; 糖尿病肾病; 肾功能; 血脂; 炎症指标; 副作用; 2型糖尿病中图分类号: R587.2 R692.9 文献标识码: A 文章编号: 1674-8182(2025)09-1346-04

Shenshuaining Tablet combined with dapagliflozin in the treatment of stage III-IV diabetic kidney disease

WANG Tianyi*, WU Jun, XUAN Jianzong, WANG Yu

*Department of Nephrology, Anqing First People's Hospital of Anhui Medical University, Anqing, Anhui 246000, China Corresponding author: WU Jun, E-mail:13866039891@163.com

Abstract: Objective To explore the effect and safety of Shenshuaining Tablet combined with dapagliflozin in the treatment of patients with stage \mathbb{II} - \mathbb{IV} type 2 diabetes mellitus (T2DM) complicated with diabetic kidney disease (DKD). Methods A total of 81 patients with stage \mathbb{II} - \mathbb{IV} T2DM complicated with DKD who were treated at Anqing First People's Hospital of Anhui Medical University from August 2022 to January 2024 were prospectively selected as the research subjects and randomly divided into the control group (n=40) and the combination group (n=41). The control group was treated with dapagliflozin (10 mg/d). The combined group was treated with Shenshuaining Tablets (4 tablets each time, 3 times a day) combined with dapagliflozin (10 mg/d). The treatment course for both groups was 12 weeks. The effects of the two groups of patients after treatment were compared. The changes in renal function indicators (serum creatinine, cystatin C, blood urea nitrogen), blood lipids (total cholesterol, triglycerides), inflammatory indicators (interleukin-6, C-reactive protein, tumor necrosis factor- α) levels before and after treatment were compared, and the safety of medication during the treatment period was evaluated between the two groups. Results After treatment, the total effective rate of the combination group was higher than that of the control group (92.68% vs 72.50%, χ 2=5.769, P=0.016). After treatment, renal function indicators, blood lipid indicators, and inflammatory indicators in both groups decreased, and compared with the control group, the combination group showed

DOI: 10.13429/j.cnki.cjcr.2025.09.010

基金项目:安徽省中医药传承创新科研项目(2022CCYB12);安徽医科大学教学医院科研专项立项项

目(WK2023JXYY013)

通信作者: 吴军, E-mail: 13866039891@163.com

出版日期: 2025-09-20

QR code for English version

more significant improvement (P<0.05). During the treatment period, there was no statistically significant difference in the incidence of side effects between the combination group and the control group (14.63% vs 10.00%, χ^2 =0.402, P=0.526). **Conclusion** The combination of *Shenshuaining* Tablets and dapagliflozin has a good clinical efficacy in the treatment of stage \mathbb{II} - \mathbb{IV} T2DM patients with DKD, and can further improve renal function, blood lipids, and inflammatory factor levels.

Keywords: Shenshuaining Tablet; Dapagliflozin; Diabetic kidney disease; Renal function; Blood lipid; Inflammatory indicator; Side effect; Type 2 diabetes mellitus

Fund program: Anhui Province Chinese Medicine Inheritance and Innovation Research Project (2022CCYB12); Anhui Medical University Teaching Hospital Research Special Project (WK2023JXYY013)

糖尿病肾病(diabetic kidney disease, DKD)是引起终末期肾病(end-stage renal disease, ESRD)的主要原因□。DKD早期无明显症状,进入显性蛋白尿期后,进展至ESRD的速度大约为其他肾脏病变的14倍,一旦进展为ESRD,会对肾功能造成不可逆的损害。而Ⅲ~Ⅳ期DKD主要表现为微量白蛋白尿不断加重和肾小球滤过率进行性下降,及时干预有逆转肾功能损害的可能,是治疗DKD的最佳时机²⁻³。临床推荐钠-葡萄糖共转运蛋白2抑制剂作为治疗DKD的一线用药,达格列净作为其中的代表药物,治疗DKD效果并不理想□。中医学认为,DKD病机主要为气阴两虚,瘀血阻络□。中医学认为,DKD病机主要为气阴两虚,瘀血阻络□。肾衰宁片属于中成药,具有较好的活血化瘀、益气健脾作用,但在DKD中的疗效尚未明确⑥。本研究探讨肾衰宁片联合达格列净治疗Ⅲ~Ⅳ期2型糖尿病合并DKD患者疗效及安全性,现报道如下。

1 资料与方法

DKD患者,按数字随机法分为对照组(n=40)和联合组 (n=41)。纳入标准:(1)符合2型糖尿病的的诊断 标准[7];(2)符合DKD的诊断标准[8],且分期为Ⅲ~Ⅳ 期;(3)年龄≥18周岁;(4)签署知情同意书。排除标 准:(1)精神类疾病;(2)其他肾脏疾病;(3)严重心、 肝、肺功能障碍;(4)妊娠或哺乳期;(5)其他类型糖 尿病;(6) 近3个月内因肾病接受透析等相关治疗; (7)恶性肿瘤;(8)血液、免疫系统疾病。两组患者 的基础资料比较差异无统计学意义(P>0.05),见表1。 本研究通过安庆市第一人民医院伦理委员会审查。 1.2 治疗方法 两组患者入院后均予以维持水与电 解质平衡、调节血脂、降压、抗感染等常规治疗,并采 用达格列净片(北京双鹭药业,10 mg,国药准字 H20233316)口服,片/次,1次/d。在此基础上,联合组 加用肾衰宁片(秦皇岛市山海关药业,国药准字 Z20060226)口服,4片/次,3次/d。两组均治疗12周。

1.1 一般资料 研究对象来自安徽医科大学附属安

庆第一人民医院就诊的81例Ⅲ~Ⅳ期2型糖尿病合并

1.3 观察指标 (1)临床疗效^[9]。显效:尿白蛋白排泄率(urinary albumin excretion rate, UAER)降低≥1/2,血糖恢复或接近正常水平,临床症状显著减轻;有效: 1/5≤UAER降低≤1/2,血糖水平显著下降,临床症状有所减轻;无效:UAER降低≤1/5,血糖水平和临床症状基本无变化;总有效率=(总例数-无效例数)/总例数×100%。(2)检测指标。于治疗前后采集患者的外周静脉血,分离血清,采用全自动生化分析仪测定血肌酐、胱抑素 C、血尿素氮、总胆固醇、三酰甘油;采用酶联免疫法测定白细胞介素(interleukin, IL)-6、C-反应蛋白(C-reactive protein, CRP)、肿瘤坏死因子(tumor necrosis factor, TNF)-α。(3)安全性分析。记录治疗期间头晕、头痛、恶心呕吐、皮肤过敏、腹泻等副作用。

1.4 统计学方法 使用 SPSS 24.0 统计软件处理数据。符合正态分布的计量资料以 \bar{x} ±s 表示,采用t检验;计数资料以例(%)表示,采用 χ ²检验。P<0.05 表示差异有统计学意义。

2 结 果

- 2.1 两组疗效比较 治疗后,联合组显效 21 例,有效 17 例,无效 3 例。对照组显效 20 例,有效 9 例,无效 11 例。联合组总有效率高于对照组,差异有统计学意义(92.68% vs 72.50%, χ^2 =5.769,P=0.016)。
- 2.2 两组治疗前后肾功能水平比较 治疗后,两组血肌酐、胱抑素、尿素氮水平均下降,且与对照组对比,联合组更低(*P*<0.05)。见表2。
- 2.3 两组治疗前后血脂水平比较 治疗后,两组血脂水平均下降(*P*<0.05)。与对照组比较,联合组治疗后血脂水平更低(*P*<0.05)。见表3。

表1 两组一般资料比较 $(\bar{x}\pm s)$

Tab.1 Comparison of general data between two groups $(\bar{x}\pm s)$

组别 例数-	性别	(例)	- 年龄(岁)	病程(d)	疾病分	期(例)	
组加	男 女 牛般(多)	物性(d)	」 Ⅲ期 Ⅳ期				
联合组	41	25	16	44.24±5.32	6.34±1.26	30	11
对照组	40	28	12	45.79±5.83	6.51±1.19	23	17
χ²/t 值		0.7	29	1.250	0.624	2.1	98
P值		0.3	93	0.215	0.534	0.1	38

表2 7	两组肾功能水平比较	$(x\pm s)$

Tab.2 Comparison of renal function levels between two groups $(\bar{x}\pm s)$

组别 -	血肌酐(μmol/L)	胱抑素	C(mg/L)	血尿素氮(mmol/L)		
	治疗前	治疗后	治疗前	治疗后	治疗前	治疗后	
联合组(n=41)	141.81±23.23	68.63±14.79 ^a	3.08±0.40	1.36±0.24 ^a	13.80±2.01	7.53±1.25 ^a	
对照组(n=40)	140.64±23.59	86.35±16.84°	3.12±0.28	1.77±0.24 ^a	12.65±2.33	9.49±1.64 ^a	
t 值	0.225	5.035	0.520	7.687	2.380	6.059	
P值	0.823	< 0.001	0.604	< 0.001	0.020	< 0.001	

注:与同组治疗前比较,*P<0.05。

表3 两组血脂水平对比 $(mmol/L, \bar{x}\pm s)$

Tab.3 Comparison of blood lipid levels between two groups $(\text{mmol/L}, \bar{x} \pm s)$

组别 -	总胆	固醇	三酰甘油		
组剂	治疗前	治疗后	治疗前	治疗后	
联合组(n=41)	5.64±1.23	3.17±0.46 ^a	2.98±0.44	1.14±0.18 ^a	
对照组(n=40)	5.37±1.30	4.08±0.29 ^a	3.11±0.36	1.75±0.31°	
t 值	0.960	10.621	1.453	10.863	
P值	0.340	< 0.001	0.150	< 0.001	

注:与同组治疗前比较,*P<0.05。

- 2.4 两组治疗前后炎症因子水平变化比较 治疗后, 两组炎症因子水平均下降,且联合组治疗后炎病因 子水平低于对照组(*P*<0.05)。见表4。
- 2.5 两组副作用比较 治疗期间,联合组6例存在副作用(头晕头痛2例,恶心呕吐1例,腹泻2例),对照组有4例(头晕头痛1例,恶心呕吐2例,泌尿系统感染1例,腹泻1例)。联合组和对照组副作用发生率差异无统计学意义(14.63% vs 10.00%, x²=0.402, P=0.526)。

表4 两组炎症因子水平比较 $(\bar{x}\pm s)$

Tab.4 Comparison of inflammatory indicator levels between two groups $(\bar{x}\pm s)$

组别 —	IL-6(pg/mL)		CRP(mg/L)		TNF-α(pg/mL)		
	治疗前	治疗后	治疗前	治疗后	治疗前	治疗后	
联合组(n=41)	13.72±2.56	4.82±0.32 ^a	14.14±2.35	6.74±1.17 ^a	51.36±6.77	32.76±4.42*	
对照组(n=40)	11.59±1.64	7.58±1.24 ^a	14.23±2.32	9.61±1.80°	51.81±6.25	44.28±5.49°	
t 值	4.446	13.741	0.173	8.529	0.311	10.415	
P值	< 0.001	< 0.001	0.862	< 0.001	0.757	< 0.001	

注:与同组治疗前比较,*P<0.05。

3 讨论

糖尿病患者长期处于高糖状态下,会导致机体氧化还原系统损伤,大量活性氧从肾小管和肾小球相关细胞中生成,引起肾小球基底膜病理性扩张,影响肾脏微循环,产生蛋白尿,引发 DKD^[10-11]。DKD病情如果进展到 ESRD,严重威胁患者生命健康,因此需及时治疗^[12]。临床西医治疗 DKD 主要采用降糖药物,但其疗效还有待改善^[13]。伴随现代中医的发展,中西医结合疗法成为治疗 DKD 的新方案^[14]。中医认为,DKD 归属于"尿浊""水肿""虚劳""关格"等范畴,由于久病导致气阴损伤,瘀血阻滞,进而气血运行不畅、脾肾两虚,形成血瘀证。因此,治疗应以健脾益肾、祛瘀泄浊为主^[15-17]。

本研究显示,治疗后联合组总有效率高于对照组,说明肾衰宁片联合达格列净治疗可以提高疗效。肾衰宁片由多味中药制成,其中,大黄逐瘀通经、通腑泄浊;太子参益气健脾;半夏燥湿;黄连子清热解毒;陈皮理气助运;丹参和红花化瘀止痛、活血

通经;牛膝行气补肾;茯苓利水渗湿、健脾和胃;诸药共用,可活血化瘀、益气健脾。与对照组比较,联合组肾功能指标改善更明显,提示相比达格列净单药治疗,联合肾衰宁片能够进一步改善肾功能。现代药理学研究证实,红花和丹参能促进肾脏局部血液灌注,提高肾小球清除率;太子参含有维生素、多糖、皂苷等多种有效物质,可以改善肾功能;茯苓中多糖体成分可以促进细胞免疫功能,修复肾小球基底膜损伤;大黄可以抑制系膜增生,延缓肾小球硬化。以上药物合用,能有效改善肾功能。

DKD患者体内存在血脂紊乱,导致肾内缩血管活性物质大量生成,易增加肾小球血液黏度,引起肾小球硬化,进一步损伤肾功能[18]。本研究中,与对照组比较,联合组治疗后血脂更低,证实肾衰宁片联合达格列净治疗可以调节血脂水平。这可能是由于中药大黄、丹参和牛膝均有调节或降低血脂的作用。

炎症反应在 DKD 病情发展中起重要作用,糖代谢紊乱会增加活性氧,促进炎症因子表达,从而损伤肾脏组织,加速肾纤维化,加重病情^[19]。本研究发

现,与对照组比较,联合组炎症因子水平更低,提示肾衰宁片联合达格列净治疗可以抑制炎症反应。大黄提取物能够抑制炎症因子表达;太子参可以增强机体免疫力,发挥抗炎效果;丹参具有一定的抗炎作用。治疗期间,两组副作用发生率比较无明显差异,提示肾衰宁片治疗不会增加药物副作用,安全性好。

综上所述,对于Ⅲ~Ⅳ期2型糖尿病合并DKD患者,采用肾衰宁片联合达格列净治疗能增强疗效、改善肾功能、降低血脂和减轻炎症反应,且安全性好,是一种较好的治疗方案。

利益冲突 无

参考文献

- [1] Ueki K, Sasako T, Okazaki Y, et al. Multifactorial intervention has a significant effect on diabetic kidney disease in patients with type 2 diabetes[J]. Kidney Int, 2021, 99(1): 256-266.
- [2] 李惠, 刘建林, 牛聪, 等. 益肾化湿颗粒治疗糖尿病肾病的效果及对肾小管损伤的影响[J]. 军少疾病杂志, 2020, 27(3):51-54
- [3] 虞天璇,王琛.消白衍生方治疗糖尿病肾病Ⅲ-Ⅳ期患者尿蛋白的疗效观察[J].世界中西医结合杂志,2023,18(7):1396-1400
- [4] 刘珊珊, 张帆, 孙丽丽, 等. 益气养血活血法联合达格列净对糖 尿病肾病患者肾小球滤过功能、血糖及 NO/ET 平衡的影响[J]. 四川中医, 2023, 41(10): 131-136.
- [5] 王泉蓉,于洪洁.益气通络消癥方对糖尿病肾病患者肾功能及 尿液足细胞损伤标志物的影响[J].临床与病理杂志,2023,43 (3):469-476.
- [6] 陈杰彬, 胡蓉, 李成杰, 等. 肾衰宁片联合左卡尼汀对慢性肾脏病3-4期患者的疗效[J]. 实用医学杂志, 2022, 38(13): 1671-

- [7] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国实用内科杂志, 2018, 38(4); 292-344.
- [8] 中华医学会内分泌学分会. 中国成人糖尿病肾脏病临床诊断的专家共识[J]. 中华内分泌代谢杂志,2015,31(5):379-385.
- [9] 杨霓芝, 刘旭生. 糖尿病肾病诊断、辨证分型及疗效评定标准 (试行方案)[J]. 上海中医药杂志, 2007, 41(7): 7-8.
- [10] Barrera-Chimal J, Lima-Posada I, Bakris GL, et al. Mineralocorticoid receptor antagonists in diabetic kidney disease - mechanistic and therapeutic effects[J]. Nat Rev Nephrol, 2022, 18(1): 56-70.
- [11] Wang H, Liu DW, Zheng B, et al. Emerging role of ferroptosis in diabetic kidney disease: molecular mechanisms and therapeutic opportunities [J]. Int J Biol Sci, 2023, 19(9): 2678–2694.
- [12] 郭永榜,张晓亚,郭青榜,等. BOLD MRI 对2型糖尿病肾病患者肾功能损伤的评估价值研究[J]. 中国 CT和 MRI 杂志, 2022, 20(4): 121-123, 168.
- [13] 黄程, 邵云侠, 吴艳, 等. 骨化三醇联合奥美沙坦酯治疗早期2型糖尿病肾病的效果及对肾病足细胞损伤的机制探讨[J]. 中国医药导报, 2022, 19(15): 79-82.
- [14] 江铭倩, 叶彬华, 任莎莉, 等. 益肾降糖饮治疗糖尿病肾脏病Ⅲ 期气阴两虚证的临床疗效及对 ROS-NLRP3-IL-1β信号通路的影响[J]. 中医药导报, 2022, 28(2): 61-65.
- [15] 李仁武, 刘宝利, 纪利梅, 等. 肾衰宁颗粒联合甘精胰岛素对糖尿病肾病患者肾功能、血糖及氧化应激的影响[J]. 现代生物医学进展, 2021, 21(14): 2726-2729.
- [16] 沈金峰,胡良伟,胡芳,等.健脾益肾养阴方治疗2型糖尿病肾病\N期患者的临床疗效分析[J].中医药信息,2021,38(5):65-68.
- [17] 蒋婷婷,曾渊杰,费梅.黄葵胶囊联合西医治疗糖尿病肾病Ⅲ、 Ⅳ期疗效及其抑制肾组织氧化应激机制探究[J].世界中西医 结合杂志,2021,16(12):2320-2324,2328.
- [18] 罗璇, 韦少恒, 韦珍红. 肾衰宁胶囊联合阿托伐他汀治疗糖尿病肾病的临床效果[J]. 广西医学, 2022, 44(13): 1462-1466.
- [19] 单鸿,吴雁翔. 肾衰宁胶囊联合替米沙坦对糖尿病肾病患者血管内皮功能及炎症因子水平的影响[J]. 成都医学院学报, 2022, 17(1): 67-70.
 - **收稿日期:**2025-03-12 **修回日期:**2025-04-27 **编辑:**王国品

(上接第1345页)

- [11] Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes [J]. N Engl J Med, 2021, 385(24): 2252-2263.
- [12] Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes [J]. N Engl J Med, 2020, 383(23): 2219-2229.
- [13] American Diabetes Association Professional Practice Committee. Chronic kidney disease and risk management: standards of care in diabetes-2025[J]. Diabetes Care, 2025, 48(1 Suppl 1): S239–S251.
- [14] Liu D, Lv LL. New understanding on the role of proteinuria in progression of chronic kidney disease [J]. Adv Exp Med Biol, 2019, 1165; 487-500.
- [15] 杨飞,邵小娟,霍媛媛,等. 糖尿病足患者血清胆红素水平与 UACR的相关性[J]. 热带医学杂志,2024,24(9):1283-1288.
- [16] 陈久应,徐新润,宰国田,等.2型糖尿病患者血浆低密度脂蛋白 亚型水平与糖尿病肾病的相关性[J].中国临床研究,2023,36 (3):445-449.
- [17] Mauer M, Doria A. Uric acid and risk of diabetic kidney disease
 [J]. J Nephrol, 2020, 33(5): 995-999.
- [18] Agarwal R, Filippatos G, Pitt B, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis [J]. Eur Heart J, 2022, 43(6): 474–484.
- [19] Mohandes S, Doke T, Hu H, et al. Molecular pathways that drive

- diabetic kidney disease [J]. J Clin Invest, 2023, 133 (4): e165654.
- [20] Antar SA, Ashour NA, Sharaky M, et al. Diabetes mellitus: classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments [J]. Biomed Pharmacother, 2023, 168: 115734.
- [21] Niu Y, Niu HJ, Chi LX, et al. *Trigonella foenum-graecum* L. protects against renal function decline in a mouse model of type 2 diabetic nephropathy by modulating the PI3K-Akt-ERK signaling pathway[J]. Front Pharmacol, 2025, 16: 1566723.
- [22] Chen S, Wang L, Rong S, et al. Extraction, purification, chemical characterization, and in vitro hypoglycemic activity of polysaccharides derived from Rosa laevigata Michx [J]. Int J Biol Macromol, 2024, 279(Pt 1): 135116.
- [23] Wu HT, Lin TT, Chen YP, et al. Ethanol extract of Rosa laevigata Michx. fruit inhibits inflammatory responses through NF-κB/MAPK signaling pathways via AMPK activation in RAW 264.7 macrophages[J]. Molecules, 2023, 28(6): 2813.
- [24] Zhang TY, Sun WJ, Wang LX, et al. *Rosa laevigata* Michx. polysaccharide ameliorates diabetic nephropathy in mice through inhibiting ferroptosis and PI3K/AKT pathway-mediated apoptosis and modulating tryptophan metabolism[J]. J Diabetes Res, 2023, 2023: 9164883.
 - 收稿日期:2025-07-19 修回日期:2025-08-08 编辑:叶小舟