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Abstract: Diabetic kidney disease (DKD) is a common and rapidly progressing microvascular complication in patients with
diabetes, and it can develop to end-stage renal disease (ESRD) in severe cases. The current treatment mainly focuses on
controlling blood sugar and blood pressure and using kidney - protecting drugs, which it can delay the progression of the
disease, but it is difficult to prevent its progression. In recent years, mesenchymal stem cells (MSCs) have emerged as a novel
approach for DKD treatment due to their low immunogenicity, multipotent differentiation potential, and rich paracrine functions.
Researches indicate that MSCs can exert renoprotective effects through a multi-target mechanism, including regulating
macrophage polarization, inhibiting the transforming growth factor (TFG) -3/ small mother against decapentaplegic (Smad) and
nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) signaling pathways, upregulating the nuclear factor
erythroid 2 - related factor 2 (Nrf2) antioxidant pathway, maintaining mitochondrial function, restoring autophagy activity, and
reversing the renal tubular epithelial-mesenchymal transition (EMT) process. In particular, MSCs-derived exosomes,
characterized by stability, low immunogenicity, and easy storability, may offer a new direction for cell-free therapy. In animal
models and early clinical studies, MSCs have demonstrated significant efficacy in improving proteinuria, alleviating renal
tubulointerstitial fibrosis, and delaying renal function decline. Although the preliminary results are encouraging, further research
and optimization are needed to address long-term safety, standardization of treatment protocols, and individualized delivery
strategies. With the understanding of the mechanisms deepens and clinical techniques improve, MSCs and their derived
exosomes hold promise for providing more precise and controllable treatment options for DKD.
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Diabetic kidney disease (DKD) is the most common therapy due to their roles in immune regulation,
and severe microvascular complication of diabetes, and a antioxidation, and anti-fibrosis [4-5].
major cause of end-stage renal disease (ESRD). The
pathogenesis of DKD involves multiple mechanisms, 1 MSCs Source and Biological Characteristics
including chronic inflammation, oxidative stress,
accumulation of advanced glycation end products (AGEs),
autophagy dysfunction, and renal fibrosis [1]. Current
treatments mainly rely on controlling blood glucose, blood
pressure, and blood lipids, as well as the use of renin-
angiotensin system (RAS) inhibitors and sodium-glucose
linked-transporter-2 (SGLT2) inhibitors [2]. However,
most treatments only delay disease progression rather than
prevent it. Mesenchymal stem cells (MSCs), which have
multi-target effects, show promising potential in DKD

MSC:s are a type of adult stem cell with broad sources,
self-renewal ability, and multi-lineage differentiation
potential, and they are widely found in bone marrow,
adipose tissue, umbilical cord, placenta, and other tissues
[6-7]. MSCs from different sources have distinct
characteristics in terms of proliferation ability,
immunogenicity, and methods of collection:

(1) Bone marrow-derived MSCs were the first studied
and have anti-apoptotic and anti-fibrotic effects [4], but
their collection process is highly invasive and the quality
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depends on the donor's condition.

(2) Adipose-derived MSCs are abundant, easily
accessible, and have strong in vitro expansion ability. They
can protect renal function by inhibiting oxidative stress and
inflammation [8].

(3) Umbilical cord-derived MSCs are simple to
obtain and have low immunogenicity. They can
significantly reduce inflammation and fibrosis in DKD
models [9].

(4) Non-conventional sources of MSCs, such as urine
and dental pulp, can be obtained with less invasiveness and
also show certain renal protective effects [10-11].

The diverse sources of cells provide potential for
personalized cell therapy for DKD.

2 MSCs Mechanisms of Improving DKD

Although the application of MSCs in treating DKD is
promising, its mechanisms of action are complex and not
fully elucidated. MSCs primarily exert their therapeutic
effects through two main pathways: homing differentiation
and paracrine signaling. However, the homing efficiency
in kidney tissues is limited, so the therapeutic effects are
more dependent on their paracrine functions, including
immune regulation, anti-inflammatory, antioxidant, and
regenerative effects [12]. Various growth factors, cytokines,
and exosomes secreted by MSCs play key roles in regulating
the pathological processes of DKD, influencing aspects such
as apoptosis, autophagy, inflammation, and fibrosis. In
particular, exosomes secreted by MSCs are considered
important mediators of intercellular communication, as they
can carry mRNA, microRNA (miR), and proteins, stably
transmitting information and regulating the function of
recipient cells [13]. Exosomes, as acellular therapeutic
carriers, offer advantages such as small size, easy storage,
and low immunogenicity, and are currently regarded as one
of the important "substitutes" through which MSCs exert
their effects. Overall, current research focuses on the
following aspects to explore the protective mechanisms of
MSCs in DKD.

2.1 Anti-inflammatory Effects and Immune Regulation

The onset of DKD is accompanied by chronic
inflammation. Dysregulated glucose metabolism and
hemodynamic abnormalities can activate kidney resident
cells to release pro-inflammatory mediators, such as
interleukin (IL)-1p, IL-6, tumor necrosis factor-alpha (TNF-
a), and monocyte chemoattractant protein-1 (MCP-1),
which lead to immune cell (macrophages, T cells, etc.)
infiltration into kidney tissues, exacerbating kidney damage
[12]. In this inflammatory environment, MSCs exhibit
potent immune-regulatory capabilities. On one hand, MSCs,
when stimulated by inflammation, secrete a variety of anti-
inflammatory cytokines and growth factors, thereby
reducing local and systemic levels of inflammation [14]. An
experimental study has confirmed that in type 2 diabetic rats,
the infusion of adipose-derived MSCs can suppress pro-
inflammatory factors, such as IL-6, IL-1p, and TNF-a, in
kidney tissues, while inducing the production of the anti-
inflammatory factor IL-10, significantly improving the

kidney's inflammatory microenvironment [15]. On the other
hand, MSCs can also influence immune cell functions
through intercellular interactions, such as inhibiting the
activation of M1-type (pro-inflammatory) macrophages and
promoting their polarization toward the M2-type (anti-
inflammatory, reparative). One study reported that miR-
146a-5p in MSC-derived exosomes could downregulate
tumor necrosis factor receptor-associated factor 6 (TRAF6)
and signal transducer and activator of transcription 1
(STATT1) signaling in macrophages, thereby promoting M2
polarization and alleviating inflammatory damage in DKD
mice [9]. Moreover, MSC therapy can reduce the infiltration
of activated CD8"T lymphocytes in kidney tissues and may
modulate the Th17/Treg balance via the programmed cell
death protein-1 (PD-1)/programmed cell death-ligand 1
(PD-L1) pathway. For example, placenta-derived MSCs in
diabetic rats have been found to increase the Treg population
and decrease the proportion of pathogenic Th17 cells,
thereby protecting kidney function [16]. It is noteworthy that
exosomes secreted by MSCs also play a significant role in
immune regulation. Human umbilical cord MSC-derived
exosomes are rich in miR-22-3p [17] and miR-342-3p [18],
which can target and inhibit the nucleotide-binding
oligomerization domain-like receptor protein 3 (NLRP3)
inflammasome in podocytes and kidney tissues under
hyperglycemic conditions, reducing the damage caused by
inflammatory cell death (pyroptosis) to the kidneys [19].
Overall, MSCs alleviate the inflammatory response in DKD
through multiple pathways, including the secretion of anti-
inflammatory factors, induction of macrophage polarization,
and modulation of T cell subsets, thereby exerting
therapeutic effects from an immune perspective.

2.2 Antioxidant Stress and Mitochondrial Protection

In a hyperglycemic state, excessive reactive oxygen
species (ROS) production and insufficient antioxidant
defense lead to a significant increase in kidney oxidative
stress levels, which is one of the key drivers of DKD
progression. The sources of ROS include glucose
metabolism disorders, accumulation of advanced glycation
end products (AGESs), activation of reduced nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase, and
mitochondrial dysfunction. The body's antioxidant
transcription factor, nuclear factor-erythroid 2-related
factor 2 (Nrf2), plays a critical role in kidney protection, as
it can induce the expression of various antioxidant
enzymes to alleviate oxidative damage [20]. Studies have
found that MSCs treatment can reduce ROS accumulation
in the kidney tissues of diabetic mouse models and
upregulate Nrf2 pathway activity [21]. For example,
exosomes derived from adipose MSCs activate the
Nrf2/Kelch-like ECH-associated protein 1 (Keapl)
pathway by downregulating the family with sequence
similarity 129 member B (FAM129B), thereby reducing
oxidative stress damage in mesangial cells and podocytes
[8]. In addition to clearing excessive ROS, MSCs can also
improve mitochondrial dysfunction caused by oxidative
stress. MSCs have been shown to reduce kidney damage
and inflammation by transplanting healthy mitochondria
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into damaged renal tubular epithelial cells [22].
Furthermore, MSCs can upregulate mitochondrial
biogenesis-related proteins, such as AMP-activated protein
kinase (AMPK) and peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1a), to reverse
mitochondrial dysfunction in diabetes [23]. It has been
reported that exosomes secreted by MSCs carry miR-204,
which can inhibit the activity of key methyltransferases
and repair mitochondrial dysfunction at the epigenetic
level [24]. In conclusion, MSCs not only directly clear and
combat ROS but also protect DKD kidneys from oxidative
damage through the activation of endogenous antioxidant
pathways and maintenance of mitochondrial function.

2.3 Autophagy Regulation, Anti-apoptosis, and Anti-
fibrosis

Autophagy is an essential protective mechanism for
cells to clear damaged proteins and organelles. In the
diabetic environment, autophagy is often impaired, thereby
exacerbating kidney cell damage. In DKD models,
abnormal autophagy has been observed in both podocytes
and renal tubular epithelial cells, contributing to disease
development. MSCs exert kidney protective effects by
regulating the autophagy process [25]. Additionally,
components in MSC exosomes can influence autophagy
signaling: studies have reported that MSC exosomes
alleviate DKD renal fibrosis through the miR-99b-
Sp/mammalian target of rapamycin (mTOR)/autophagy
axis [26]. It is noteworthy that the balance between
autophagy and apoptosis is crucial for cell survival. When
autophagy is insufficient, cells are more likely to undergo
apoptosis. MSCs have been shown to have anti-apoptotic
effects in multiple studies: they can secrete epidermal
growth factor (EGF) to protect podocytes, reduce high-
glucose-induced podocyte apoptosis, downregulate pro-
apoptotic proteins (such as Bax, Caspase-3), and
upregulate anti-apoptotic proteins such as B-cell
lymphoma-2 (Bcl-2), thus maintaining the survival of
glomerular and renal tubular cells [27]. At the same time,
MSCs can resist high-glucose-induced apoptosis through
the activation of the Akt/Nrf2 pathway [20,28]. MSC
exosomes also play a role in anti-apoptosis: for example,
miR-16-5p in human urine-derived stem cell exosomes can
protect podocytes, reduce their apoptosis, and improve the
glomerular filtration barrier; exosomes derived from
MSCs carrying miR-424-5p can simultaneously inhibit
high-glucose-induced renal tubular epithelial cell
apoptosis and epithelial-to-mesenchymal transition (EMT),
thus preventing progressive injury in DKD [30-31]. Renal
fibrosis is a core and irreversible pathological change in
the late stage of DKD, caused by excessive extracellular
matrix (ECM) deposition and tissue sclerosis. Hyper-
glycemia and inflammatory mediators can induce renal
EMT, promote myofibroblast generation, and drive
fibrosis development. The mechanisms of MSCs in anti-
fibrosis mainly involve the inhibition of pro-fibrotic
signaling pathways. The transforming growth factor
(TGF)-B/small mother against decapentaplegic (Smad)
pathway plays a key role in DKD fibrosis: overexpression

of TGF-B1 activates Smad2/3, leading to the synthesis of
large amounts of collagen and fibronectin. Animal
experiments by Rafiee et al. [32] showed that MSC
treatment can downregulate TGF-B1 levels in the kidneys
of DKD rats and reduce Smad3 phosphorylation,
significantly improving renal tissue fibrosis. In addition to
the classical TGF-f pathway, MSCs and their exosomes
can influence other fibrosis-related pathways. For instance,
recent studies have found that exosomes from human
umbilical MSCs can inhibit the Hedgehog/Smoothened
signaling pathway, reducing renal tubular epithelial cell
EMT, and alleviating kidney fibrosis in diabetic mice [33].
Furthermore, exosome miRs (such as miR-424-5p, miR-
16-5p) mentioned above, through multi-target synergy,
directly reduce the formation of myofibroblast phenotypes
such as o-smooth muscle actin (SMA) and restore the
expression of epithelial markers such as E-cadherin [30].
Thus, MSCs intervene in the pathological process of DKD
through multiple mechanisms, including enhancing
autophagy, inhibiting apoptosis, and blocking pro-fibrotic
signaling [31].

2.4 Promoting Angiogenesis and Renal Tissue Repair

Kidney microcirculation damage is a key
characteristic of DKD, and promoting the regeneration of
damaged blood vessels is crucial for improving renal
function. MSCs and their secreted products show great
potential in promoting angiogenesis. Studies have shown
that conditioning MSC culture medium can protect
damaged vascular endothelial cells. In a DKD rat model,
after umbilical MSC treatment, vascular endothelial
growth factor (VEGF), platelet endothelial cell adhesion
molecule-1 (PECAM-1), von Willebrand factor (vWF),
and other angiogenesis-related indicators in renal tissue
were significantly upregulated, and capillary density
increased, suggesting an improvement in blood supply [34].
In-depth mechanistic studies revealed that MSC-derived
exosomes play a key role in promoting vascular
regeneration: they are rich in VEGF and other angiogenic
signals that can stimulate endothelial cell proliferation and
angiogenesis. For example, high levels of VEGF were
detected in exosomes from human urine-derived stem cells,
which are believed to be related to their function in
promoting vascular reconstruction in damaged tissues [35].
In contrast, some studies noted that miR-15b-5p in MSCs
protects against abnormal neovascularization by
downregulating the VEGF-pyruvate dehydrogenase kinase
4 (PDK4) axis in DKD podocytes [36]. Therefore, MSCs
and their exosomes have a bidirectional regulatory effect
on angiogenesis in DKD kidneys: they can promote
beneficial vascular regeneration by providing angiogenic
stimuli to maintain the renal microvascular network; at the
same time, components like miR can inhibit abnormal
pathological angiogenesis and endothelial dysfunction,
ultimately protecting the kidney vascular system.

3 Challenges and Clinical Translation Prospects

MSCs offer new approaches and possibilities for the
treatment of DKD due to their multiple functions,
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including immune modulation, antioxidant properties, and
regenerative promotion. In numerous animal studies and
preliminary clinical trials (such as the NEPHSTROM
study), MSCs therapy has shown positive effects in
reducing urinary protein, improving renal function, and
alleviating tissue lesions. However, MSC therapy still
faces numerous challenges in terms of routine clinical
application. First, MSCs have a low survival and
engraftment rate in the recipient's body, and improving
their efficiency in reaching and staying at the lesion site is
a key challenge. Second, MSCs from different sources
exhibit functional differences, and factors such as the
donor's disease status and age may affect cell quality.
Therefore, optimizing the cell source and in vitro culture
conditions is necessary to achieve the best therapeutic
effect. Third, allogeneic MSCs transplantation may induce
immune rejection. Although MSCs themselves have low
immunogenicity, safety concerns still need to be addressed.
Future studies should focus on determining the optimal
administration route, dose, and timing of MSCs therapy
through more clinical trials, as well as long-term follow-up
on its efficacy and safety. Notably, MSCs-derived
exosomes and other acellular therapies are rapidly
developing and may help overcome some of the limitations
of live cell therapies. In conclusion, with further research
into the mechanisms of MSCs and the accumulation of
clinical experience, MSC therapy is expected to become
more effective and feasible, providing safer and more
efficient personalized treatment strategies for DKD patients.
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Abstract: Diabetic kidney disease (DKD) is a common and rapidly progressing microvascular complication in patients
with diabetes, and it can develop to end-stage renal disease (ESRD) in severe cases. The current treatment mainly
focuses on controlling blood sugar and blood pressure and using kidney-protecting drugs , which can delay the
progression of the disease, but it is difficult to prevent its progression. In recent years, mesenchymal stem cells
(MSCs) have emerged as a novel approach for DKD treatment due to their low immunogenicity, multipotent
differentiation potential, and rich paracrine functions. Researches indicate that MSCs can exert renoprotective effects
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factor (TFG) -B/ small mother against decapentaplegic (Smad) and nucleotide - binding oligomerization domain - like
receptor protein 3 (NLRP3) signaling pathways, upregulating the nuclear factor erythroid 2-related factor 2 (Nif2)
antioxidant pathway, maintaining mitochondrial function, restoring autophagy activity, and reversing the renal tubular
epithelial -mesenchymal transition (EMT) process. In particular, MSCs-derived exosomes, characterized by stability,
low immunogenicity, and easy storability, may offer a new direction for cell-free therapy. In animal models and early
clinical studies, MSCs have demonstrated significant efficacy in improving proteinuria, alleviating renal
tubulointerstitial fibrosis, and delaying renal function decline. Although the preliminary results are encouraging, further
research and optimization are needed to address long - term safety, standardization of treatment protocols, and
individualized delivery strategies. With the understanding of the mechanisms deepens and improvement of clinical
techniques, MSCs and their derived exosomes hold promise for providing more precise and controllable treatment
options for DKD.

Keywords: Diabetic kidney disease; Mesenchymal stem cells; Exosomes; Immunomodulation; Mitochondrial function
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